Contents

Using HP Test Exec SL Book
E2011-90019 — Software Rev. 3.00 — Rev. E - January, 1998

1. Working With Testplans

A Suggested Process for Creating a Testplan.......cccccevvecveeeveeiecieenen,
Preparing to Writethe Testplan.........cccccovveieeveiecie e
Writing the TESIPIaN.........ccvieevecececeee e

To Create aTeStPIANei e et

To Specify Switching Topology Layersfor aTestplan.........cccccceeeuveee.

Using Tests & Test Groupsin TeSIPIaNS......ccccevvveceeviecveeneeseecee e
To Add aNew Test/TESt GrOUPccvvcvveeerieiriesie et
ToAdd an EXiStiNg TESE......ccveeeiieiieie et
To Examine or Modify aTest/Test Groupccccveveeeeeesiesieeiennns
TOMOVE ATES/TESE GIOUD ..cuveeeveeitieieeseecieeereeteesteesreesreeseesneeeneeas
TO Copy ATES/TESE GIOUP ..evveveeeererteesteesteesieeseesteesaeesaeesreesreesreesnas
ToDelete aTeSt/TESt GIOUP ...cecvveeierieerieeieesieesteeseesreesre e e e nreesreens

Controlling the FIow of TEStINGcccevvieeeiiieee e
Using Flow Control Statements...........ccceveveeeevesiesieieseseseesie s

Which Flow Control Statements are Available?............ccccevuenenee.
What Are the Rules for Using Flow Control Statements?...........
To Insert a Flow Control Statement into aTestplan....................
Interacting with Flow Control Statements..........cccceeeeevivvvieevineenee.
Using Arithmetic Operatorsin Flow Control Statements............
ToBranch on aPassing TStccoccviiiieie e
ToBranchonaFaling TeSt.......ccccciiiiie e
To Branch on an EXCEPLIONcccuveieiii ittt
To Execute a Test/Test Group Once Per Testplan Run.....................
IO N[0 T 1= SR

RUNNING @ TESIPIAN ...t
ToLoad aTeStPlan.......ccceceiieviee e e
TORUNATESPIAN ...
Viewing What Happensasa Testplan RunS..........cccceeveviiniiieeninnn,

Using the Report Window to Monitor Results............cccecveeiene.
To Enable/Disable the Report Windowcccccveeveveieennene
To Specify What Appears in the Report Window

Using the Trace Window to Monitor 1/O Operations..................
To Enable/Disable the Trace Windowcccccevveveieieennne.

26
28

To Specify Which Testsare Traced.........cccceevveveeveeveenieennen, 38

To Specify What Appears When Tests are Traced................. 39
TOSIOP ATESPIAN. ..o 40
TOADBOrt aTESIPIAN.......ecieticeece e e 40

Other Tasks Associated with Testplans..........cccceveeeeceviiceeieccece e 41
Using Globa Variablesin Testplans........cccoccevvveeveeneesiie e s, 41
To Use aGlobal Variable Whose Scopeisthe Testplan.............. 41

To Use aGlobal Variable Whose Scope is a Sequence............... 42

To Specify the Global Optionsfor aTestplan.........cccceevevevecivennen. 43
To Specify Which Topology Filesto Use.........ccccovevvveieeiecieceen, 43
Using Testplans & UUTswith an Operator Interface....................... 43
To Register a Testplan for an Operator Interface..........cccceeeuieee. 43

To Register aUUT for an Operator Interface..........ccccoevevvevnnenee. 44
Using Variantsin TESIPIaNSceveecieiiie e 44
ToAddaVarianttoaTestplan........ccccoevveevevecvece e, 45
ToRenameaVariantinaTestplan.........ccccoveeeeieveece e 45

To DeleteaVariant fromaTestplan..........cccceeeeveiecceseceeciene. 45

To Examine All the Variantsfor aTestplanccccceeceecieennenne 46
Examining Testplans & System Information..........cccccevceieeecencieenienne, 47
OVEIVIBW ...ttt e et ene e e e seeseeeneenaens 47
Which Kinds of Information Can | EXaming?cccevevervenennenn 47
To List Testplans & System Information............cccceeeveveeiecreenenen. 48
To Print Listings of Testplans & System Information...................... 49
To Find Specific Text in Testplans & ListingS.......cccoocevcvevieeiieeninns 49
Debugging TESIPIANS.........cciceieecie e 50
Using Interactive Controls & Flags........cccoeveeiceiie e 50
Single-Stepping iN @ TESPIaNccveveveeieceeece e 53
Single-Stepping Through TESES........ccveieveiieie e 53

OVEIVIBW.....ceeicsiee et 53

To Single-Step Through the Testsin aTestplan 53

To Cancel Single-Stepping Through the Testsin a Testplan. 53

Single-Stepping Through ACionS........cccccv v icieeceecee e 54

OVEIVIBW....ceeee et 54

To Single-Step Through ACLIONS........ccccvvieviieie e 54
Using the Watch Window to Aid Debuggingcccceveevieeceecveenee. 55

L@ oV S 55
To Insert a Symbol into the Watch Window...........ccccceevvieeinne. 56

To Insert a Switching Node into the Watch Window 57

To Insert an Instrument into the Watch Window...........ccovveeee.... 57

To Remove an Item from the Watch Windowccccceenee. 58
Fine-Tuning TESIPIANS.....c.cie et 59
Optimizing the Reliability of Testplansccccevevevieveece e, 59
Optimizing the Throughput of Testplansccccccvevevieveecece e, 60
Suggested Waysto Make Testplans Run Fasterccoeveenneene. 60

Using the Profiler to Optimize Testplans.........coccveveevveviecnene, 61

To Set Upthe Profiler ..o 61

TO RUN the Profiler ... 62

To View Profiler Resultsin HP TestExec SL.........coceeveennee 62

To View Profiler Resultsin a Spreadsheetcccoccveeveieennen. 63

MOVING @TESIPIANccvi et 65

2. Working With Tests& Test Groups

Specifying Parametersfor a Test/Test GIroup........cccoveveveeveesieeceeiee s 68
To Add aParameter to a Test/TESt GIrOUP......ccecverveereresiesiesieeie i 68
Modifying a Parameter for a Test/Test Groupccocveveeveevieesreennnns 68
To Remove aParameter from aTest/Test Group........ccevveeceriveennenns 69

Specifying Actionsfor a Test/Test GroUPccccvvecerveeveeree e 70
ToAdd an Actionto a TeSt/TESt GIrOUPccvveeerverreerie e e s 70
To Specify Parameters for Actionsin a Test/Test Group.................. 72
To View Parametersfor Actionsin a Test/Test Group.......ccccueeveee. 72
To Specify the LimitSfor aTeSt......ccoovevicceerie e 73
To Remove an Action from aTest/Test Group......cccccceveveeveereeennnnne 74

To Save aTest DefinitioninaLlibraryccoccvveevececvicvee e, 75

To Pass Results Between Tests/Test Groups........cevevveeeereeieesiesieseennns 77

To Share aVariable Among Actionsin aTest/Test Group.........c.c........ 79

Controlling Switching During a Test/Test Groupccccceveveeeeeereenne. 81
Overview of Creating a Switching ACtionccccevvevvieeviecie s, 81
To Create a SWitChing ACHIONccceeveeieiiee e 84
To Delete a SWitChing ACHIONcceeveeiieiiie e 85
To Specify a Switching Path in a Switching Actioncccccev.e. 86
To Modify a Switching Path in a Switching Action............cccccueeu.... 86
To Delete a Switching Path in a Switching Action.............cccceveneee. 87

Specifying Variations on Tests/ Test Groups When Using Variants.......88
L@ VT SR 88

To Specify a Test/Test Group’s Characteristics for Each Variant

88

(O L] oo T = o I T € 20

To View the Limitsfor TestsinaTestplan.........cccocoveveeeceeiieeneennns 90
To Modify the Limitsfor TestsinaTestplanccccceevveeiececnenen. 91
Viewing the Test Execution Details...........cccoveveieeieecesceie e 93
OVEIVIBIW ...ttt 93
To View the Test Execution DetailSccoovevereiieneneeene e 94

3. Working With Actions

Thingsto Know Before Creating ACtioNS.........ccoocveveevveciecee s 96
HOW DO | Create ACHIONS?ccoveieireeiesesie e s 96
Which Languages Can | Useto Create ACtionS?........ccccceveveeiieeninnns 97
Improving the Reusability of ACtiONS..........cccccoeveeveivin e, 98

Designing for Reusabilitycccocvevieiiee v, 98
Documenting Y our ACHONScccivecveie e 99
Choosing Names for ACtIONS..........ccccvveveieiiiese e 99
Entering Descriptions for ACtionscccceeevvieveiecee e 99
Entering Descriptions for Parameters...........cocovcvveveeieeninns 100
Choosing Keywords for ACtioNScccveeveeiieesiie e 100

TODEfINE AN ACHON ...t 101

Using Parameters With ACHIONSccovciveiiiiiiieceseee e 104
Types of Parameters Used With ACLIONS..........ccccoevivcieci e, 104
To Add aParameter to an ACHION.........cccorireieeieinenee e 106
To Modify a Parameter to an ACtioN........cccocceeveeceeviesec e 108
To Delete aParameter to an ACHONcc.ovoveeerieieeeie e 108

Using Keywords With ACHIONS..........cccciviieeiiniee e 109
To Add aKeyword to an ACtioNccoecueveieeveceece e 109
To Delete aKeyword from an ACtioN.........cccocveveveiiiie v 109
To Add aMaster Keyword to the List.........cccooveveeveiceie e 110
To Delete aMaster Keyword fromthe Listccoceevvvieeviieececneen 110

Creating ACHONS TN C ..ot 111
Overview of the PrOCESS.........coeriiiriee e 111
WIHHING C ACHONS ...t 112

Using Parameter Blocks With aC Compilerccccocvevennrnnees 112
Using Parameter Blocks With a C++ Compiler...........ccoveueneee 115
Exception Handling in C ACtiONS.........coevveiievienee e 120
Using C Actionsto Control Switching Paths...........cccccceveeveene.e 123
OVEIVIBW ...ttt 123

Using API Functions to Control Switching Paths...................... 124

Using States to Store Switching Data..........ccccccceeveiceeveecieenen, 126
Adding Revision Control Information for Actions.............ccceeue.... 129
Example of CreatingaC ActioninaNew DLLccccccccvevenenneen. 130

Defining the ACHON........ccveececce e 130

Specifying the Development Environment Options................... 131

Setting the Path for Libraries.........cccooeevieiceeveecee v 131
Setting the Path for Include Files........ccoooeveiciieccecceeie 132

Creating aNew DLL Project........cccovvveieviieeiece e 132

Specifying the Project SEttingsSooeveveeveeieseesese e 133

Writing Source Files for the Action Code...........cccoveveviieennene, 136

Adding Source Filesto the Project..........cocovcevieivviciecvicceecs 137

Updating DependenCiEs........coevveieeiieieesee e see e seeneee e 137

Verifying the Project’'s CoOntents...........ccceeeieieiiviiiiiiiien e 138

Compiling the Project...........coooooii e, 138

Copying the DLL to Its Destination Directory..............ccccvvvvene. 138

OVEIVIEW ...ttt ettt ettt e e e e e e e e e e e 138
Creating a Custom Tool to Copy the DLL...........cccvvvuunnnen. 139
Using the Custom Tool to Copy the DLL........cccooeevvvvveinnnnnn. 140
Example of Defining a C ACtiONcceiviiiciiiiie e 141
Adding a C Action to an EXisting DLL..............uvvvvivvvieiviiiiiiiiiinnnnn, 142
Debugging C ACHONSvvvieiiieeieeeeeeeee e 144
Creating Actions in HP VEEovviiiiiiiiiiiiiiiiiiiiiieeiiiiveesnsinennenenns 147
Restrictions on Parameter Usage in HP VEE..................cnnnnnn. 147
Defining an HP VEE ACHONcooiiiiiiiiiiice e 148
Example of an HP VEE ACHIONcoceiiiiiiiiiice e 148
Debugging HP VEE ACHIONScoiiiiiieee e, 150
Error Handling iNn HP VEE ..., 150
Controlling the Geometry of HP VEE Windowsc...c.ccvvvvvneee. 151
Executing HP VEE Actions on a Remote System...........ccccceeeeeeee. 151
Creating Actions in National Instruments LabVIEW........................... 153
Related Files ..o 154
Restrictions on Parameter Passing..........ccccccvvvvvviviiieiiiiiieieiieeeeeeee, 154
Defining a National Instruments LabVIEW Action....................... 156
Example of a National Instruments LabVIEW Action.................... 157
Setting Interface Options for National Instruments LabVIEW 158
Creating Actions in HP BASIC for Windowsccocvviiiinieieenceennnns 159
RelAted FlESeeiiiiiiiiiei e 160

Restrictions on Parameter Usagein HP BASIC for Windows........ 160

Defining an HP BASIC for Windows Action..........cccceceecveieeninnas 161
Creating an HP BASIC for Windows Server Program.................... 161
Example of an HP BASIC for Windows Action...........ccccceeeeeeuenen. 164
Debugging HP BASIC for Windows ACtions...........cccccveveieeeenne. 165

4. Working with Switching Topology

Defining the Switching TOPOoIOgYc.cocvvveevieriiiieseseece e 168
OVEIVIBIW ...ttt 168
Matching Physical Hardware to Logical Names............cccccvevveneenee. 170

Where Do the Names of Switching Paths Come From?............ 170
Using Aliases to Simplify the Names of Switching Paths......... 171
When Should | Specify WiIreS?.......cccocvvivieeveeiee e 172
What Happens If a Node Has Multiple Names?.............cce...... 172
How Do | Specify the Preferred Name for aNode?.................. 173
Defining the System Layer........cccovvivieieieee e 174
Defining the FiXtUre Layercceeieeieeiiecse e 177
Defining the UUT Layerccevceeiee ettt 179
Using the Switching Topology Editor..........ccccoeeveeiieiiieiciecieecies 180
To Create aTopology Layer.......ccceeveveieereiece e 180
USING ALIGSESviceeeeie ettt 181
TOAAA AN ALIBS.....coiiiiiieee e 181
ToModify an AliaS.......ccoeiieiieiie e 182
ToDeetean AliaS.....cccooeeeeieieeeee e 183
USING WITES.....ooiieeiecie et e et te e teete ettt sneeae et e neens 183
TOAAD AWITE ..ot 183
TOMOIfY @WIr€....oociiceceeee e 184
TODEAEEAWITE....cciiecee e 185
USING MOAUIES.......cvecieeiee ettt e 185
ToOAdd aMOdUIE.......ccooiieeeee e 185
ToModify aModule........ccooevveiieieeiee e 187
ToDeeteaMOodUIE ... 187
Duplicating an Alias, Wire, or Module.............cccovvvevviieieennnns 187

5. Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Test & Action Libraries..........cccecvveevieceiieceece e, 190
How Keywords Simplify Finding Itemsin Libraries...................... 190

Searching for Itemsin aLibrary.......cccoccoveviiiiici e 190

Strategies for Searching Libraries........ccccoovveiievievicccceccieecies 192
Specifying the Search Path for Libraries...........ccoeevvivveeiiieenee. 193
To Specify System-Wide Search Paths for Libraries................. 194
To Specify Testplan-Specific Search Paths for Libraries.......... 195
To Remove a Path from the List of Search Paths....................... 195
Using Search Pathsto Improve Testplan Portability....................... 196
WIS aTo]l DI = oo (o 1 oo [197
What Happens During Datalogging?..........ccceeveveeveieeeeseceeeesnn, 197
What isthe Format of Logged Data?ccceeveveveiiniieseeceecieenens 198
Controlling How Datalogging Worksccccceceieenenie e 198
To Set the Datalogging Options for an Entire Testplan............. 198
To Set the Datalogging Options for an Individual Test............. 200
To Select the Datalogging FOrmatccceceveeecencieecesieeninens 200
Using Datalogging with Q-STATS Programs..........cccceveeeveieennns 201
To Set the Learning Feature & PassLimits........c.cccocovvveeienneene 202
Restrictions on the Names of TeStS........cocvvverereneniensescniens 202
Managing Datalogging FileS.......cooeiieiieiiece e 203
Using Symbol Tables........ccociieiieiiecec et 204
About Symbol TablesS........cccoceiie i 204
Predefined Symbols in the System Symbol Table...........cccueueeee. 205
How Symbols Are Defined in Flow Control Statements................ 207
Programmatically Interacting with Symbols.............cccocevveveieneen, 208
To Examine the Symbolsin a Symbol Table.........cccceeeeviviieenen. 208
To Add a Symbol to a Symbol Table.........cccecveiievieeiiencieccee e, 209
To Modify a Symbol ina Symbol Table........ccccoovevieiieiiniieceee, 209
To Delete a Symbol from a Symbol Table.........ccccevveeeciiineenen, 210
Using External Symbol Tables.........ccccevvvviievieiecce e 210
To Create an External Symbol Table........ccccoovevviicieciiec, 210
To Link to an External Symbol Table........ccccovevcviieeiecieenies 211
To Remove alLink to an External Symbol Table....................... 211

L0 LS oo I (o[11 oo 212
To Document Testplans, Actions & Switching Topology 213
TO DOCUMENE TESES.....eeeieietieie et 214
To View or Print Auditing Information..........cccceceevieevieeieeviesneenen, 214

6. System Administration

SYSEEIM SELUD ...veeeeeee ettt e e ste e e e e e e nn e e 216
Specifying the Location of the System Topology Layer................. 216
Specifying the Default Variant for aNew Testplan..........ccccceeaeee. 216
Setting Up an Operator or Automation Interface.........cc.ccccovveenneen. 217

OVEIVIBW ...ttt 217
Setting Up an Automation Interface to Start Automatically...... 217

Starting an Automation Interface Created in Visual Basic... 217
Starting an Automation Interface Created in Visual C++ 217

Setting Up Automatic Printing of Failure Tickets..................... 218
Specifying the Polling Interval for Hardware Handlers............. 218
Setting Up the Auditing Features...........coovevvie e v 219
Controlling the Appearance of the StatusList...........cccccveveennee. 219
Controlling the Operation of the Revision Editor...................... 220
DirectorieS and FilES.........ooiiiiieeeee et 222
Standard DireCIONTES........oiueeeeieeie e 222
Standard File EXIENSIONS.........coeiririniiinese e 223
INItialiZatioN FilES.......coviiriiie e 224
Recommended Locations for Files..........ooeiiinininiinenc e 225
ManNaging DLLSccoiiiece e 226
How HP TestExec SL Searchesfor DLLS........cccooveeivieieennene 227
Situations That Can Cause Problems With DLLS...........ccc....... 228
Symptoms A ssociated with Loading the Wrong DLL 229
Minimizing the Problems with DLLS.........cccccovvivieveiicieciee, 230
Managing Temporary FIlES.........cccocveveiiiiiieseseseesese e 230
Controlling SyStemM SECUNLYccoveieeieeieesie e sre e e 231
Using the Default Security SEtiNgS.......cccoveveevvevce e 231
USEl GIOUDBS ...eevveeeieeeeiieeesteessieeeseeesteesnaeesteesteeesneeesnseesneeesnsenns 232
SYSLEM RESOUICESccuvveeiiieiiee ettt 232
Group ACCESS PriVIEJES......c.cevvieieciecisiece e 232
Customizing Security SEtiNGS.......ccevveveiveeiie e 233
To Change aPassword..........cccocieeeieeieenee e eree e 233
TOAAd ANEW USEN ..o 234
To Modify an EXiSting USEr........ccceeveiiieiie e 235
To Delete an EXIiSting USENccocvevieiiiicsieceee s 235
To Modify aUser's Privil€gesS.......cccoveveveiiceece e 235
To Add aNew Group of USErS.....cccccveeeeieeve e see s 236

To Modify an Existing Group of USErS........cccceeeveeieeiiiesineennnens 236

Adding Custom Toolsto HP TEStEXEC SLccvevveveececec e 237
Syntax for Adding Custom TOOIS..........cccceeeevevireee e 237
To Add Entriesto the TOOIS MeNU.........ccooeerrinineneneseecee 239

7. Working with VXIplug& play Drivers

What iSVXIPIUG&PIAY 2.ttt 242

How Do HP TestExec SL & VXIplug& play Work Together?............ 243

How Do Actions Control InstrumentsviaVXlplug&play?................. 245

To Control aVXIplug&play Instrument from an Action..................... 248
Configuring HP TestExec SL to Use V XIplug& play Instruments .248
Creating the ACHON........oiie e e 249
Using the ACtioN IN@TESt......cccveicieceecee e 251

Beyond VXIPIUG&E PIAYccveeeiieeceeee e 253

o 1= TS 255

Notice

The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not be liable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaimsthe
implied warranties of merchantability and fitness for a particular purpose.
HP shall not beliable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights L egend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rightsin Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.SA.

Rightsfor non-DOD U.S. Government Departments and Agencies are as set
forthin FAR 52.227-19 (¢) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
aterationsis expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.

11

Note

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporation.
Q-STATS Il is a trademark of Derby Associates, International.

RoboHELP is a registered trademark of Blue Sky Software Corporation in
the USA and other countries.

Printing History
E1074-90000 — Software Rev. 1.00 — First printing - August, 1995
E1074-90005 — Software Rev. 1.50 — Rev. A - March, 1996

The documentation expanded into a multi-volume set of books at Rev. B.

E1074-90008 — Software Rev. 1.51 — Rev. B - June, 1996
E2011-90012 — Software Rev. 2.00 — Rev. C - January, 1997
E2011-90015 — Software Rev. 2.10 — Rev. D - May, 1997
E2011-90019 — Software Rev. 3.00 — Rev. E - January, 1998

12

About This Manual

This manual describes how to do tasks of interest to most users of
HP TestExec SL.

Conventions Used in this M anual

Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions
Here, you are being told to choose the Actions command that appears when
you expand the Listing command in the View menu.

If aform uses tabs to organize its contents, the name of atab may appear in
the hierarchy of menus and commands. For exampl e, the Options dialog box
has atab named Search Paths. A reference to that tab looks like this:

View | Options | Search Paths

To make the names of functions stand out in text yet be concise, the names
typically are followed by “empty” parentheses—iMy,Functi on() —
that do not show the function’s parameters.

Some programming examples use the C++ convention for comments, which
is to begin commented lines with two slash characters, like this:

/'l This is a coment
C++ compilers also will accept the C convention of:
/* This is a comment */

The C++ convention is used here simply because it results in shorter line
lengths, which make examples fit better on a printed page. If you are using a
C-only compiler, be sure to follow the C convention.

13

14

Working With Testplans

This chapter describes how to use testplans, which are named sequences of
tests that are executed as a group to test a specific device or unit under test.

For an overview of testplans, see Chapter 3 in the Getting Sarted book.

15

Working With Testplans
A Suggested Process for Creating a Testplan

A

Suggested Processfor Creating a Testplan

Although we have no way of knowing about your specific hardware, we
recommend that you consider the following process when creating a
testplan.

Preparing to Writethe Testplan

1

Gather the testing specifications and requirements for the UUT (unit
under test).

You must thoroughly understand the UUT before you can test it
effectively. Thisincludes both the physical (such as pinouts) and
electrical characteristics of the device.

Plan the tests and the sequence in which they will be executed.

Determine which kinds of tests are needed in your testplan (including
tests for failure and exception handling, if desired). Determine the order
in which the tests should be executed. Given the above, determine where
to use test groups.

Tip: You may find it useful to draw a worksheet and make copies of it to
write on when planning tests. For example, the worksheet might briefly
describe the tedt, list the hardware resources needed, the test limits, any
setup or cleanup requirements, timing constraints, alist of input and

16

Working With Testplans
A Suggested Process for Creating a Testplan

output pins, and such. An example of atypical worksheet is shown
below.

TEST NAME VoltzDMM
Measurement(s): (measure, limits)

10 volts Limits: 9.9 -10.1

Preconditions:
UUT Setup

None

Connections X)
V Src hi to DMM hi, V src lo to DMM lo

Power (volts, amps, pin)

N/A

Load (value, power, pin) N/A
Constraints:

Timing N/A

Test Sequencing N/A

Test Description:
Output 10 volts w/voltage source & measure w/DMM

Reuse:
Test Templates

Volt2DMM

Actions Switching, Configure V source, Measure DMM

Instruments: (name, settings) V source 10 volts

DMM volts

3. Plan the system resources for each pin on the UUT.

Using the information from the previous step, be sure your test system
has the hardware resources needed to do the tests. For example, do you
have enough power supplies, signal sources, and signal detectors? If not,
you must add hardware or find away to simplify the tests.

4. Plan and build the fixture or other means of connecting the test system’s
hardware with the UUT.

Pins on the UUT must be connected to the test system’s power supplies,
signal sources, and signal detectors. If you test various kinds of UUTs on
asingle test system, you may want to use an interchangeable fixture to
make the connections. Or, you need some type of cabling to make the
necessary connections.

17

Working With Testplans
A Suggested Process for Creating a Testplan

If you are using programmable switches, such as switching cards, to
make connections between resources and the UUT and you have
hardware handler software for those switches, you probably will want to
use the Switching Topology Editor to define your topology so you can
use switching actionsin your tests.

Writing the Testplan
1. Add tests and test groupsto your testplan.

2. Copy and customize existing tests from libraries where possible. Where
needed, add the teststo test groups. If there is no existing test to reuse,
create new tests from existing actions in libraries where possible. If no
suitable actions exist from which you can create a new test, create new
actions, add them to an action library, and then create a new test from
them.

3. Tunethetestsfor performance and reliability.

This process can be as flexible as you like. For example, you might begin

by creating actions, using them to create tests, and then using the tests to
create a testplan. But if it is more convenient—for example, if different
people are developing the actions and the testplan—you may want to
begin with an empty testplan and then expand it by adding tests as the
actions needed to create the tests become available.

For more information about tuning tests, including how to use
HP TestExec SL’s built-in profiler, see “Optimizing the Throughput of
Testplans.”

18

Working With Testplans
To Create a Testplan

To Createa Testplan

Use the Test Executive's graphical toolsto create a testplan.

1. Click IE in the toolbar or choose File | New in the menu bar.
2. Choose Testplan as the type of document.
3. Choose the OK button.

4. Add one or more tests or test groupsto the list shown in the left pane of
the Testplan Editor.

For information about adding tests and test groups, see “Using Tests &
Test Groups in Testplans.”

5. Click E in the toolbar or choose File | Save in the menu bar.
6. Enter a name for the testplan.

7. Choose the Save button.

19

Working With Testplans
To Specify Switching Topology Layers for a Testplan

To Specify Switching Topology Layersfor a
Testplan

The switching topology information for a specific testplan resides in three

files whose extensions are “.ust”. These files contain information about the
system, fixture, and UUT layers of switching topology. Given that one test
system can use many testplans, you must specify which switching topology
files to use for a given testplan.

Each test system has one system layer defined for it, and the name and
location of the file containing the system layer resides in HP TestExec SL's
initialization file. This is described under “System Setup” in Chapter 6.

Although you can locate the remaining two files, which contain the fixture
and UUT layers, wherever you like, it usually makes sense to put them with
other files used with the testplan. Then you must associate these two
topology files with the testplan.

Do the following to associate the files for the fixture and UUT layers with
the testplan:

1. Load the testplan.

2. Choose Options | Switching Topology Files in the menu bar.

3. Specify the locations of the files for the fixture and UUT layers.

For an overview of switching topology, see “About Switching Topology” in

Chapter 3 of th&etting Sarted book. For detailed information, see
Chapter 4 in this book.

20

Working With Testplans
Using Tests & Test Groups in Testplans

Note

Using Tests & Test Groupsin Testplans

The Testplan Editor window supports the various mechanisms that

Microsoft Windows provides to select multiple items; i.e., holding the Citrl

key as you click multiple items; pressing and holding the mouse’s left button
and then dragging across multiple items; and clicking the first item in a
desired list, simultaneously pressing and holding the Ctrl and Shift keys, and
clicking the last item in the list. This means that many of the tasks described
for individual tests or test groups also can apply to multiple tests or test
groups. For example, if you select multiple tests or test groups, you can copy
or delete them as you would a single test or test group.

To Add a New Test/Test Group

1. Click the desired insertion point in a testplan shown in the left pane of the
Testplan Editor window.

The test or test group will be inserted immediately before the line
selected as the insertion point.

2. Do one of the following:
« Toinsert atest, click in the toolbar or choose Insert | Test in the
menu bar.

-0r -

T.'=T'.T

» Toinsertatest group, click in the toolbar or choose Insert | Test

Group in the menu bar.

3. Do the following in the right pane of the Testplan Editor window:

a. Specify a name for the test or test group.

21

Working With Testplans
Using Tests & Test Groups in Testplans

If you are using datalogging, be aware of the following restrictions on
the names of tests or test groups:

« If your log data is processed by HP Pushbutton Q-STATS, you
must not use slashes (/ or \) in test names.

« If your log data is processed by Q-STATS Il, only the first forty
letters of the test name are significant.

b. Add any desired actions to the test or test group.

See “To Add an Action to a Test/Test Group” in Chapter 2 for more
information.

c. If you wish to use variants to provide multiple versions of the
parameters and limits, specify them.

See “To Add a Variant to a Testplan” for more information.

To Add an Existing Test

The easiest way to create a test is to reuse a similar test from a test library.

Note Be sure the search paths for test libraries are set up correctly or you may not
be able to find the test you want; see “Specifying the Search Path for
Libraries” in Chapter 5.

1. With a testplan loaded, choose an insertion point in the left pane of the
Testplan Editor window.

The test will be inserted immediately before the line selected as the
insertion point.

2. Click @ in the toolbar or choose Insert | Saved Test in the menu bar.

3. When the Test Libraries box appears, use it to find an existing test similar
to the one you need.

22

Working With Testplans
Using Tests & Test Groups in Testplans

For more information about using the Test Libraries box’s search
features, see “Searching for Items in a Library” in Chapter 5.

4. Make a copy of the test under a new, uniqgue name.
5. Modify the existing actions as needed.

For more information, see “To Specify Parameters for Actions in a Test/
Test Group” and “To Specify Limits for Actions in a Test/Test Group” in
Chapter 2.

6. Modify the existing parameters as needed.

For more information, see “Specifying Parameters for a Test/Test Group”
in Chapter 2.

To Examine or Modify a Test/Test Group

1. Click a test or test group shown in the left pane of the Testplan Editor
window.

2. Use the right pane of the Testplan Editor window to examine or modify
the contents of the test or test group.

See Chapter 2 for information about specifying the contents of tests and test
groups.

ToMovea Test/Test Group

1. Click a test or test group shown in the left pane of the Testplan Editor
window.

2. ChooselE in the toolbar or Edit | Cut in the menu bar.
3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted before
that line.

23

Note

Note

Working With Testplans
Using Tests & Test Groups in Testplans

4. Choose @ in the toolbar or Edit | Paste in the menu bar.

If desired, you can move atest or test group from one testplan to another.
Follow the procedure described above, but run two instances of HP TestExec
SL. Cut the test or test group from atestplan in one instance and pasteit to a
testplan in the other instance.

To Copy a Test/Test Group

1. Click atest or test group shown in the left pane of the Testplan Editor
window.

| B
2. Choose in the toolbar or Edit | Copy in the menu bar.

3. Click the desired new location for the test or test group.

If you click an existing line, the test or test group will be inserted before
that line.

4. Choose @ in the toolbar or Edit | Paste in the menu bar.

If desired, you can copy atest or test group from one testplan to another.
Follow the procedure described above, but run two instances of HP TestExec
SL. Copy thetest or test group from atestplan in one instance and paste it to
atestplan in the other instance.

To Deletea Test/Test Group

1. Click atest or test group shown in the left pane of the Testplan Editor
window.

2. Choose Edit | Delete in the menu bar.

24

Working With Testplans
Controlling the Flow of Testing

Note

Controlling the Flow of Testing
Using Flow Control Satements

Because you specify flow control statements in predefined, “fill in the
blanks” dialog boxes, you do not need a detailed understanding of their
syntax. If you make an error in entering the syntax, you will be prompted to
correct it.

25

Working With Testplans
Controlling the Flow of Testing

Which Flow Control Satements are Available?

HP TestExec SL supports the following statements that let you control the
flow of testing in atestplan.

if..then...else Conditionally executes one or more statements in the
testplan, depending upon the value of an expression.

i f Expression then
[st at enent s]
[el se
[statenents]]
end if

Example:

i f System RunCount = 0 then
test Testl

el se
test Test2

end if

for...next Repeats one or more statements in the testplan a
specified number of times. A negative value for St ep
causes the counter to decrement.

for Variable = Start to End step Step
[st at enent s]
next

Example:

for Counter = 1 to 5 step 1
test Testl
next

26

for...i

loop

Working With Testplans
Controlling the Flow of Testing

Repeats one or more statements in the testplan for each
value in a list of arguments.

for Variable in Goup
[st at enent s]
next

Example:

A=14

B=2

c=9

for SequencelLocal s. MyVariable in C A B
I Assume that Sequencelocal s. MyVari abl e
| is passed as a paraneter to Testl
test Testl

next

Repeats one or more statements in the testplan until a
condition specified in an expression is satisfied.

| oop

[st at enent s]

exit if Expression
end | oop

Example:

| oop

test Testl

test Test2

exit if SequencelLocal s. WVariable = 3
end | oop

27

Working With Testplans
Controlling the Flow of Testing

It also supports the miscellaneous syntax elements listed below, which you
can use with the flow control statements.

(assignment operator) Sets a variable to a value.

Vari abl e = Val ue

Example:

X=2
SequencelLocal s. MyVariable = 7

comment Non-executing line used to document a

testplan.
Example:

! This is a conmrent

else, end if, next, end Syntax elements used with the flow control
loop, exit if statements. Some of these are required and

others optionally extend the functionality of the
flow control statements.

What Arethe Rulesfor Using Flow Control Satements?

Keep the following in mind when using flow control statements:

Variable names can be either the name of the symbol by itself, such as
“A” or “MySymbol”, or include the name of an internal or external
symbol table, such as “SequencelLocals.MySymbol”.

Note: In most cases, variables in flow control statements should use
symbols in global symbol tables, such as SequencelLocals or System,
instead of using a symbol table whose scope is more restricted, such as
TestStepLocals or TestStepParms. This helps keep the symbol in scope
even if you reorganize the testplan.

If you use a variable in a flow control statement but do not specify a
symbol table as part of the variable’s declaration, HP TestExec SL looks
for an existing symbol with the same name in the SequencelLocals
symbol table. If there is no existing symbol, one is automatically created
in SequencelLocals.

28

Note

Working With Testplans
Controlling the Flow of Testing

ToInsert a Flow Control Satement into a Testplan

1. Intheleft pane of the Testplan Editor window, choose the desired
insertion point in your testplan.

You can insert a statement on a blank line or into existing tests or
statements. If you click to highlight an existing test or statement, the new
statement will be inserted immediately preceding it.

2. Choose Insert | Other Statements in the menu bar and select the desired
kind of flow control statement.

3. Usetheright pane of the Testplan Editor window to enter any
declarations required for the specific kind of flow control statement you
chose.

Interacting with Flow Control Satements

The syntax for accessing a symbol in a symbol table from a flow control
statement is <symbol table. symbol>. If you do not specify <symbol table>,
its value defaults to Sequencel ocals.

If desired, you can directly manipulate the value of avariable in a flow

control statement or use the variable’s value to control some aspect of
testing. Then, examining or modifying the value of the symbol is the same as
examining or modifying the value of the variable in the testplan.

How is this useful? Suppose you were testing a module whose stimulus—an
input voltage, perhaps—needed to vary within predefined limits until the
module either passed or failed. You could:

1. Execute the test for that module in a “for...next” loop, such as:
for Voltage = 9.9 to 10.1 step 0.1
Modul eTest

next

2. In the test for the module, query the value of the counter variable and use
it to vary the stimulus.

29

Working With Testplans
Controlling the Flow of Testing

Modul eTest
...Get value of Voltage fromsynbol table
...Use value of Voltage to increnent input voltage

Other examples of using flow control statements with symbols include:

« Branching on passing or failing tests, which are described under “To
Branch on a Passing Test” and “To Branch on a Failing Test”

« Executing a test or test group only once per run of the testplan, which is
described under “To Execute a Test/Test Group Once Per Testplan Run”

Using Arithmetic Operatorsin Flow Control Satements

If desired, you can use the arithmetic operators for addition (+), subtraction
(-), multiplication (*), and division (/) in flow control statements. Also, you
can use parentheses to force the order of execution of those arithmetic
operators. Shown below is an example of a testplan that contains arithmetic
operators in flow control statements.

A=(2+3) * 4

B=A/5

if A- B = System RunCount then
test Testl

end if

To Branch on a Passing Test

You can use an “if...then” statement to examine the predefined TestStatus
symbol in the System symbol table and programmatically implement an “on
pass branch to” feature based on the results of a test; e.g.,

test Testl
if System TestStatus = 1 then
I If Testl passed run Test2

test Test?2
end if
test Test3

1. Inthe left pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

30

Working With Testplans
Controlling the Flow of Testing

Tip: You can click the line that follows the test even if it is blank.
2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.TestStatus = 1” for the value of
Expression in the right pane.

4. Place any tests, test groups, or statements you wish to have executed as
“branch on pass” within the boundaries of the “if...then” statement.

To Branch on a Failing Test

You can use an “if...then” statement to examine the predefined TestStatus
symbol in the System symbol table and programmatically implement an “on
fail branch to” feature based on the results of a test; e.qg.,

test Testl
if System TestStatus = 0 then
' If Testl failed run Test2

test Test2
end if
test Test3

Or, you can use the graphical On Fail Branch To feature that is built into
each test.

Do either of the following:

1. Inthe left pane of the Testplan Editor window, click to select the line that
follows the test upon which you wish to branch.

Tip: You can click the line that follows the test even if it is blank.
2. Choose Insert | Other Statements | If...Then in the menu bar.
3. With the “if...then” statement selected in the left pane of the Testplan

Editor window, specify “System.TestStatus = 0” for the value of
Expression in the right pane.

31

Working With Testplans
Controlling the Flow of Testing

4,

4.

Place any tests, test groups, or statements you wish to have executed as
“branch on fail” within the boundaries of the “if...then” statement.

-0r -

In either the Main or Exception sequence, click a test in the left pane of
the Testplan Editor window.

Choose the Options tab in the right pane of the Testplan Editor window.

Click the arrow to the right of “On Fail Branch To” to invoke a list of
tests to which the current test can branch if a failure occurs.

The default value of “<Continue>" means that if the current test fails, the
next test in the list will be executed; i.e., there is no branching.

Click a test in the list to select it as the desired branch.

To Branch on an Exception

1.

In the left pane of the Testplan Editor window, click the arrow to the right
of “Testplan Sequence”.

Choose “Exception” in the list.

. Add one or more tests to the list of tests for the Exception sequence.

This list of tests will be executed if an exception occurs when executing
the testplan.

Click the arrow to the right of “Testplan Sequence”.

Choose “Main” in the list to return to the Main—i.e., non-exception—
sequence of tests.

32

Working With Testplans
Controlling the Flow of Testing

To Execute a Test/Test Group Once Per Testplan Run

You can use an “if...then” statement to examine the predefined RunCount
symbol in the System symbol table and have specific tests, test groups, or
statements executed only once each time the testplan runs; e.g.,

test Testl
if System RunCount = 1 then
! Execute Test2 the first tine the testplan is run

test Test2
end if
test Test3

1. Inthe left pane of the Testplan Editor window, click to select a line where
you wish to insert an “if...then” statement to bound one or more tests, test
groups, or statements to be executed only once per testplan run.

2. Choose Insert | Other Statements | If...Then in the menu bar.

3. With the “if...then” statement selected in the left pane of the Testplan
Editor window, specify “System.RunCount = 1” for the value of
Expression in the right pane.

4. Place the desired tests, test groups, or statements within the boundaries of
the “if...then” statement.

Tolgnorea Test

If desired, you can use the “Ignore this test” feature to ignore a test when the
testplan is run. Because no integrity checking is done on ignored tests, they
are useful when you wish to insert non-working tests during testplan
development and finish them later. Also, you can use ignored tests in
conjunction with variants so that one variant of a testplan executes different
tests than does another variant.

Test F'arametersl .-“-‘-.u:tin::nsl Limitz | Options Dncumentatiunl

33

Working With Testplans
Controlling the Flow of Testing

As shown below, an ignored test has a small cross beside it in the sequence
of tests.

F Testplan Editor

Testplan Sequence: I & ET j

ezt Testl
I The test below will be ignored

1. With atestplan loaded, in the |eft pane of the Testplan Editor window
click to select the test to be ignored.

Note If you are using variants, specify which variant to use before telling the Test
Executive to ignore atest. For more information about variants, see
“Testplan Variants” in Chapter 3 of thdsing HP TestExec SL book.

2. Choose the Options tab in the right pane of the Testplan Editor window.

3. Check the box labeled “Ignore this test”.

34

Working With Testplans
Running a Testplan

Running a Testplan

To Load a Testplan

Load atestplan so you can examine, modify, or run it.

|
1. Click in the toolbar or choose File | Open in the menu bar.

2. Typethe name of an existing testplan file (.tpa) or use the graphical
browser to find an existing testplan.

3. Choose the Open button.

To Run a Testplan

Run atestplan to execute the testsin it.
1. Load thetestplan, if needed.

2. (optional) If you wish to use atestplan variant other than the defaullt,
Normal, do the following:

a. Click in the toolbar or choose Options | Testplan Optionsin the
menu bar.

b. Onthe Execution tab in the right pane of the Testplan Editor window,
choose the desired variant from the list under Testplan Variant.

Tip: The current variant is shown toward the right side of the status
bar at the bottom of the Test Executive environment.

c. Choose the OK button.

3. Choose E in the toolbar or choose Debug | Go in the menu bar.

35

Working With Testplans
Running a Testplan

Viewing What Happens as a Testplan Runs

Using the Report Window to Monitor Results

As shown below, the Report window lets you monitor the results as a
testplan runs.

Report [_ [T] x|

Begin Testplan =]
CAProgram Files\HP TestExec SL\samplesYfilterdemoitestplan\Filter.tpa
Test Variant: Normal

10430496 10:58:50

Opening 10 Session

Opening 10 to Module

Clearing and Resetting the Module
Digitizing the Signal

Closing 10 to Module

Closing 10 Session

End of Testplan -
L v 4

Tip: You may want to minimize the Report window if you wish to examinea
report later but do not want the Report window appearing al the time.

To Enable/Disable the Report Window
» With a testplan loaded, cli in the toolbar or choose
Window | Report in the menu bar.

A check mark appears to the left of Report in the upper region of the
Window menu when the Report window is enabled.

To Specify What Appearsin the Report Window
1. With a testplan loaded, cIi in the toolbar or choose
View | Testplan Options in the menu bar.

2. When the Options box appear, choose its Reporting tab.

36

Working With Testplans
Running a Testplan

3. Enable/disable any or al of the following check boxes under Report.

Passed tests If enabled, information about tests that pass appears in
the Report window.

Failed tests If enabled, information about tests that fail appears in
the Report window.

Exceptions If enabled, information about exceptions that occur
while executing the testplan appears in the Report
window.

4. Choose the OK button.

Using the Trace Window to Monitor 1/0 Operations

As shown below, the Trace window lets you dynamically monitor 1/0
operations with hardware, such as instruments and switching modules, in a
test system as a testplan runs. Options associated with it let you specify
when to trace tests and how much information to gather during tracing.

Trace =
YTrace: =
YHunSequence

Scope: viOpenDefaultRM: Opened resource mgr session feed [65261)
MUX3: Closed element [row 0. column 0]

MUXx3: Closed element [row 1. column 3]

MUX3: Closed element [row 1, column 1]

MUX3: Closed element [row 0. column 2]

Scope: Opened Resource 133dd08 [20176136), mode 0, timeout D, session=
Scope: Set attribute VI_ATTH_TMO_VALUE on object 1a2b [6699] to value de
Scope: session deed [57069]: Clearing instrument

Scope: Session deed (57069) <="*R5T"

Scope: Session deed [57069) <= "SYSTEM:HEADER OFF;*SRE 16"

Scope: Session deed [57069) <=""AUTOSCALE;ACQUIRE:TYPE NORMAL:CC

Trace information appears in named “streams” of information that identify
the information’s source. The name of the stream is followed by a semicolon
and the status message for that stream. In the example above, MUX3 is the
name of a trace stream whose source is a hardware handler that controls a
switching module whose logical name is “MUX3". Status information from
MUX3, such as “Closed element [row 0, column 0]”, describes what is

37

Working With Testplans
Running a Testplan

happening at MUX3 as the testplan runs. “Scope” is another stream in the
example.

Using the Trace window is a three-step process. You must:

1. Enable the Trace window

2. Specify which tests to trace

3. Specify what kind of trace information to display for each traced test
To Enable/Disable the Trace Window

» With a testplan loaded, choose Window | Trace in the menu bar.

As shown below, a check mark appears to the left of Trace in the upper
region of the Window menu when the Trace window is enabled.

el

i Beport

: v Trace
| Watch

To Specify Which Testsare Traced

1. With a testplan loaded, in the left pane of the Testplan Editor window
choose one or more tests to be traced.

2. Choose Debug | Set Trace in the menu bar.

As shown below, a trace icon appears to the left of traced tests.

F Testplan Editor

Testplan Sequence: I tain j

teszt Check. Period

test Check Risetime

test Check. Yolkage Peak to Peak

38

Working With Testplans
Running a Testplan

Tip: A quick way to select al tests for tracing isto choose atest in the left
pane of the Testplan Editor window, type Ctrl-aor choose Edit | Select All in
the menu bar, and then choose Debug | Set Trace in the menu bar.

To Specify What Appears When Tests are Traced

1. With atestplan loaded, choose Debug | Trace Settings in the menu bar.

2. Enable/disable any or all of the following items under Trace Settings.
Each corresponds to a named stream of trace information.

User Trace If enabled, user-defined trace information appears for
actions in traced tests as the testplan runs. This is the
default stream for trace information sent from actions.

“User-defined trace information” means information
programmatically sent to the Trace window from
actions via API functions such as Ut aTr ace() . See
the Reference book for more information about APIs
used for tracing.

Test If enabled, test names appear for traced tests in the
Trace window as the testplan runs.

Test Details If enabled, detailed information about traced tests
appears in the Trace window as the testplan runs.

other Some actions, hardware handlers, or instrument
drivers add other stream names to the Trace settings
menu.

API functions such as Ut aTr aceEx() and

Ut abwModTr aceEx() let you send trace
information in named streams from actions and
hardware handlers, respectively. See the Reference
book for more information about APIs used for tracing.

39

Note

Note

Working With Testplans
Running a Testplan

As shown below, acheck mark appears next to the names of streams selected
for tracing.

User Trace
Test
v Test Details

To Stop a Testplan

When you stop a testplan, execution halts when the current operation—such
as executing an action—has finished.

||
» Choose Debug | Stop or in the menu ba|___ in the toolbar.

If you need to halt a testplan immediately, use the Abort command instead.

To Abort a Testplan

When you abort a testplan, execution halts immediately regardless of what
the testplan is doing.

» Choose Debug | Abort or in the menu bal_!_l in the toolbar.

If you wish to complete the current operation in progress—such as executing
an action—before halting, use the Stop command instead.

40

Working With Testplans
Other Tasks Associated with Testplans

Note

Other Tasks Associated with Testplans

Using Global Variablesin Testplans

Global variables et actions share data across tests in a testplan. The scope of
aglobal variable can be:

» The entire testplan, which means the symbol is stored in an external
symbol table or in the System symbol table.

« Restricted to a single sequence in a testplan, which means the symbol is
stored in the Sequencelocals symbol table.

For detailed information about using symbols tables, see “Using Symbol
Tables” in Chapter 5.

By default, HP TestExec SL stores some global information in predefined
symbols in the System symbol table; see “Predefined Symbols” in
Chapter 5.

To Use a Global Variable Whose Scope isthe Testplan

1. With a testplan loaded, use the Symbol Tables box (View | Symbol
Tables) to declare a new variable in an external symbol table.

Note: If there is no existing external symbol table to hold your global
variable, use File | New and choose Symbol Table to create a new one.

Then choose the Add External Symbol Table button in the Symbol Tables
box to make the externally stored symbol visible to your testplan.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. In the list of actions, choose an action that has a parameter you wish to
associate with the global variable.

Example: Name of parameter is “dutvoltage” and Value is “5".

41

Working With Testplans
Other Tasks Associated with Testplans

4. Double-click the Name column in the row that contains the parameter of
interest.

5. When the Edit Symbol box appears, enable Reference a Symbol if it is
not already enabled.

6. Select the desired external symbol table from the Search list.

7. Usethe Reference list to select the name of the global variable.

8. Choose the OK button.

Example: Value of parameter “dutvoltage” now is
“@ExtSymTable.dutvoltage”; i.e., the value of the parameter is determined

by the value of variable “dutvoltage” in the ExtSymTable symbol table.

To Use a Global Variable Whose Scopeisa Sequence

1. With a testplan loaded, in the left pane of the Testplan Editor window
choose a sequence—Main or Exception—in which to use the global
variable.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. Inthe list of actions, choose an action that has a parameter you wish to
associate with the global variable.

Example: Name of parameter is “dutvoltage” and Value is “5”.
4. Double-click the Name of the parameter.

5. When the Edit Symbol box appears, enable Reference a Symbol if it is
not already enabled.

6. Select the SequenceLocals symbol table from the Search list.
7. Use the Reference list to select the name of the global variable.

8. Choose the OK button.

42

Note

Working With Testplans
Other Tasks Associated with Testplans

Example: Value of parameter “dutvoltage” now is
“@Sequencelocals.dutvoltage”; i.e., the value of the parameter is
determined by the value of variable “dutvoltage” in the Sequencelocals
symbol table.

To Specify the Global Optionsfor a Testplan

1. With a testplan loaded, cIi in the toolbar or choose

Options | Testplan Options in the menu bar.

2. Use the features on the various tabs in the Testplan Options box to
specify the global options for the current testplan.

To Specify Which Topology Filesto Use

1. With a testplan loaded, choose Options | Switching Topology Files in the
menu bar.

2. Type the name of a topology file for the fixture layer or click the
associated Browse button and use the graphical browser to choose a file.

3. Type the name of a topology file for the UUT layer or click the associated
Browse button and use the graphical browser to choose a file.

4. Choose the OK button.

Topology files have a “.ust” extension; e.g., “fixturel.ust”.

Using Testplans & UUTswith an Operator Interface

To Register a Testplan for an Operator Interface

A typical operator interface lets production operators choose from a list of
testplans to run. You must manually edit file “tstexcsl.ini” to specify which
testplans appear in the list, which variant is chosen by default, and a brief
description of what the testplan does.

43

Note

Note

Working With Testplans
Other Tasks Associated with Testplans

1. Openfile “tstexcsl.ini” (in directory “EP TestExec S home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more testplans to the [Testplan Reg] section of the
file.

The file contains descriptive comments about the formats of these entries.

3. Save the updated file and exit the editor.

To Register a UUT for an Operator Interface

Some operator interfaces let production operators use a bar code reader to
scan the information for a UUT, and then parse the bar code to automatically
load the appropriate testplan. If your operator interface supports this feature,
you must manually edit file “tstexcsl.ini” to specify the association between
UUTs and testplans.

1. Openfile “tstexcsl.ini” (in directory “KP TestExec S home>\bin”) with
a text editor, such as WordPad in its text mode.

2. Add entries for one or more UUTSs to the [UUT Reg] section of the file.
The file contains descriptive comments about the formats of these entries.
3. Save the updated file and exit the editor.

Using Variantsin Testplans

Variants let you create named variations on the contents of a testplan. After
you create a testplan’s variants, you can specify the parameters and limits for
the tests and test groups in each variant. Because they let yoneuse

testplan withn different sets of test limits and parameters, variants are useful
where one UUT is very similar to another except for slightly different values
for its test limits or parameters.

44

Working With Testplans
Other Tasks Associated with Testplans

To Add a Variant to a Testplan

1. With atestplan loaded, choose Options | Variantsin the menu bar.
2. When the Test Variants box appears, choose the Add button.

3. Inthe Add Variant box, type a name for the new variant in the field under
New Variant.

4. Choose atemplate for the new variant from the list of existing variants
shown under Based On.

Tip: Base the new variant on whichever existing variant is most like the
new one.

5. Choose the OK button.

For information about specifying the contents of variants after you have

created them, see “Specifying Variations on Tests/Test Groups When Using
Variants” in Chapter 2.

To Renamea Variant in a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

3. Choose the Rename button.

4. In the Rename Variant box, choose the name of an existing variant from
the list shown under Variant Name.

5. Type a new name for the variant in the field under New Name.
6. Choose the OK button.

To Delete a Variant from a Testplan

1. With a testplan loaded, choose Options | Variants in the menu bar.

45

Working With Testplans
Other Tasks Associated with Testplans

2. When the Test Variants box appears, click the name of an existing variant
in the list under Current Variants.

Note: You cannot delete Normal, which is the default variant.
3. Choose the Delete button.
4. Choose the OK button.

To Examine All the Variantsfor a Testplan

You can examine all the variants of atestplan while globally viewing or
modifying the test limits; see “To View the Limits for Tests in a Testplan” in
Chapter 2.

46

Working With Testplans
Examining Testplans & System Information

Examining Testplans & System Information

Overview

The Listing window letsyou view or print information about various aspects
of your testplans and hardware controlled by your test system. The example
below shows how you can view a descriptive listing of the testsin atestplan.

E= Filter_tpa = E

Listing topic: TESTS
Testplan file: C:\Program FilesYHP TestExec SL%samples)filterdemo’testplan’

...Filter.tpa
Produced at: 12/5/1996 13:01:18

TestiGrp: testgroup I/0 Configure

Setup Lotion: Configure IO Session

Switching: [+15 P3_+]
[-15 DC/DC Converter — Input P3 -]
[GND PS_-]
[GND DC/DC Converter + Input PS_+]
At Test Setup: Connect Faths
Lt Test Cleanup: Disconhect Faths

LR R R R R R R R R R R

TestiGrp: testgroup Time Domain
Setup Lction: Initialize_module

Variant: Normal
FParm: module handle Walue: [@Sequencelocals.3cope

Which Kinds of Information Can | Examine?

The categories of information you can examine or print in the Listing
window include:

Actions Lists detailed information about actions in the current
testplan, including action names, source file names, and
routine names

Symbol tables Liststhe symbols used in symbol tables in the current
testplan.

47

Working With Testplans
Examining Testplans & System Information

Testplan Audit

Testplan

Tests

Adjacencies

Node Labels

Instruments

Switches

Fixture Layer

System Layer

UUT Layer

Lists auditing information for the current testplan

Lists detailed information about the current testplan,
including test groups, tests, actions, variants, and run
options.

Lists detailed information about tests in the current
testplan, including test names, actions, variants, source
files names, and routine names.

Lists all topology adjacencies—i.e., nodes separated by
a switching element—for the current testplan, including
preferred node names, adjacency names, module names,
and switching elements and their positions.

Lists all node labels for the current testplan, including
label names, preferred node names that are aliased,
descriptions, and keywords.

Lists information about instruments controlled by the
current testplan.

Lists information about switching hardware controlled
by the current testplan.

Lists topology information about connections on the
fixture topology layer, which includes aliases, wires,
and modules.

Lists topology information about connections on the
system topology layer, which includes aliases, wires,
and modules.

Lists topology information about connections on the
UUT topology layer, which includes aliases, wires, and
modules.

ToList Testplans & System Information

1. Choose View | Listing in the menu bar.

48

Working With Testplans
Examining Testplans & System Information

2. Choose which type of listing to view.

To Print Listings of Testplans & System Infor mation

1
2

w

4

5

. Choose View | Listing in the menu bar.

. Choose which type of listing to view.

. Click % in the toolbar or choose File | Print in the menu bar.

. Set the printing options as desired.

. Choose the OK button.

Tip: You can use File | Print Preview in the menu bar to see how alisting will
look before printing it.

To Find Specific Text in Testplans & Listings

If desired, you can search testplans or any of the various listings of system
information for a specific word or phrase.

1.

Do either of the following:

If you wish to search a testplan, with a testplan loaded click in the left
pane of the Testplan Editor window.

If you wish to search a listing, generate the listing as described earlier
in “To List Testplans & System Information.”

CIickIE in the toolbar or choose Edit | Find in the menu bar.

In the “Find what” field, specify the text you wish to search for.

Tip: Check the “Match case” box if you wish to search for exactly the
same pattern of upper and lowercase characters specified in the “Find
what” field.

Choose the Find Next button.

49

Working With Testplans
Debugging Testplans

Debugging Testplans

Asyou devel op testplans and their components you need to verify their
operation and any fix problems that arise. HP TestExec SL's debug features
let you interact with testplans and their components as they execute.

If you are using C/C++ to develop actions, also see “Debugging C/C++
Actions” in Chapter 3.

Using Interactive Controls & Flags

Once started, a testplan normally runs from beginning to end, executing tests
in the order in which they appear in it. However, the Test Executive provides
several features you can use to modify the running of a testplan. These
features can be particularly useful when you are debugging a testplan or test,
or when you need to stop or pause the testplan at a specific place while
troubleshooting a UUT.

There are two main kinds of features you can use to control testplans:

Interactive These are features such as Stop/Continue, Restart, Step,
Controls Stop, and Pause. They are interactive insofar as using them
causes an immediate response.

Flags You can set “flags”—i.e., markers—in the testplan. A flag is
acted upon if it is encountered as the testplan runs. You can
set a flag that marks a test to be stopped upon, skipped,
traced, or have its actions single-stepped. Also, you can
clear an individual flag or clear all flags for selected tests.

50

Working With Testplans
Debugging Testplans

As shown below, these features appear as options under the Debug menu in
the menu bar.

Options Window Help

Go F5 -

Bestart Shift+F5

Step F10 Interactive
Stop F? controls
Pause F3 -

Set Breakpoint Fa -«

Clear Breakpoint Shift+F3
Set Skip Ctrl+k
Clear Skip

Set Trace Flags
Clear Trace

Set Action S5tep F11

Clear Action S5tep Shift+F11
Clear Debug Items -

When you use the Debug menu’s options to set a flag for a test in a testplan,
one of the icons shown below appears to the left of the test.

This icon... Means that...
A breakpoint has been set for the test, which means the
@ testplan will execute until the breakpoint is encountered,
and then stop executing immediately before the marked
test.
Items marked in the testplan will be skipped; i.e., the
@ testplan will not execute the marked items.

Be aware that skipping a test is not the same as ignoring it
(see “Ignoring a Test” earlier in this chapter); the overall
integrity of skipped tests is checked, but that of ignored
tests is not.

: The test will be traced, which means that status information
will appear in the Trace window as the test executes.

51

Working With Testplans
Debugging Testplans

Actions in the marked test will be single-stepped. The
h testplan will pause at the first action in the test, and you can
use either the Step command in the Debug menu or the

s | icon in the toolbar to execute the test's actions one at
atime.

A combination of the trace and single-step icons; i.e., the
@ marked test will be traced as you single-step through it.

As a shortcut when setting flags, you can select atest in the |eft pane of the
Testplan Editor window and then right-click to invoke the menu shown
below.

Testplan Sequence: IMain j Te:

testgroup 140 Configure Sur
testgroup Time Domain
test Check Period
(= test Check Rizetime
*» test Check ‘oltage Peak to Peak
[test Check Frequency

test Check 0w

Set Breakpoint Ctrl+T

end testgroup
end testaroup Clear Breakpoint
Set Skip Crrl+k
Clear Skip
Set Trace

Clear Trace

Set Action Step
Clear Action Step
Clear Debug Items

Select All Chrl+A
Tip: If desired, you can select multiple testsin atestplan and simultaneously
set or clear all of their flags.

Caution If you add flags and then save atestplan, the flags are saved with it. Be sure
to remove flags from testplans before rel easing them to production. For

52

Working With Testplans
Debugging Testplans

example, abreakpoint flag can cause the testplan to stop executing
prematurely and leave the operator interface “hung.”

Single-Stepping in a Testplan

Single-stepping in a testplan lets you pause as needed to verify that tests and
actions are working correctly.

Single-Sepping Through Tests

Overview

If desired, you can single-step through the tests in a testplan. Each time you
single-step, the testplan executes one test, halts, and then displays a pointer
icon that identifies the next test to be executed.

In the example below, test ProfilerDemoTestl has been executed and the
testplan has halted pending execution of test ProfilerDemoTest2.

P Testplan Editor

Testplan Sequence: IMain ;I

tezt ProfilerDemoT est1
[ezt ProflerDemoT est?

test ProfilerDemaT est3
tezt ProfilerDemaoT estd

To Single-Sep Through the Testsin a Testplan

*
» With a testplan loaded, cIiE in the toolbar or choose Debug | Step
Test in the menu bar.

To Cancel Single-Sepping Through the Testsin a Testplan

||
« While single-stepping through a testplan, CL__ in the toolbar or
choose Debug | Stop in the menu bar.

53

Working With Testplans
Debugging Testplans

Single-Sepping Through Actions

Overview

Each test in atestplan contains one or more actions. |f desired, you can
single-step through the actions. This can be useful if you wish to verify the
results of each action as atest executes. For example, you could connect test
eguipment to the UUT, pause on a specific action, and verify that the action
isinteracting correctly with the UUT.

When the testplan is paused while single-stepping through actions, the Test
Debug Information box shown below appears.

Test Debug Information [x|

Test Mame: ProfilerDemoTest2

Entry Execute
Test Cperation Mames ProfilerDemo
Test Parameters Courit: 10
Test Localz

: ProfilerDemo

Cortinue Step

Here, the test's name is ProfileDemoTest2 and it contains an execute action
named ProfilerDemo that uses a parameter named Count whose value is 10.
The test is paused on ProfilerDemo.

To Single-Step Through Actions

1. With a testplan loaded, in the left pane of the Testplan Editor window
click a test whose actions you wish to step through one at a time.

2. Choose Debug | Set Action Step in the menu bar or right-click and
choose Set Action Setup from the menu that appears.

54

Working With Testplans
Debugging Testplans

3. Runthetestplan as usual.

4. When the test pauses on an action and the Test Debug Information box
appears, make debugging measurements or select aniteminthelist under
Test Operation Names and examine its characteristics.

5. Do one of the following:

« To single-step to the next action in the test (if the test contains more
than one action), choose the Step button.

-0r -

« To proceed to the next test without single-stepping through any more
actions in the current test, choose the Continue button.

-0r -

: || .
« To stop after executing the current test, chE in the toolbar
and then choose the Continue button.

6. When you have finished single-stepping, clear the flags used to mark the
tests.

Using the Watch Window to Aid Debugging

Overview

Many programming environments provide a “watch” feature that lets you
examine the values of variables and expressions while debugging programs.
In a similar fashion, HP TestExec SL lets you specify items such as symbols,

instruments, or switching paths to be watched when debugging a testplan.
You use the Insert menu to place these items into the Watch window, as

1. You can watch instruments only when using specific driver software from
Hewlett-Packard.

55

Note

Working With Testplans
Debugging Testplans

shown below, and then examine them when the testplan is paused, such as
while single-stepping through actions.

m ¥iew Debug Options Window Help

I Test Chrl+T *e E =1l i
3 Test Group Ctrl+G |—| ®| | Iféﬁl | |
Saved Test... I Filter tpa !Elm
¥ —
Other Statements iSystem: TestStatus =
Alias Chrl+L
Wire Ctrl+'w
Module Ctrl+M
Instrument. ..
Switching Hode._.
All Switching Modes

The name of the symbol table in which a symbol resides is prefixed to the

name of the symbol. In the example above, the symbol named TestStatus

appears in the symbol table named System—i.e., System: TestStatus—and
its current value is zero.

To ensure that testplans execute rapidly, the Watch window is updated only
when testplan execution pauses or stops.

To Insert a Symbol into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

If the Watch window is not visible, choose Window | Watch. If the Watch
window is visible but inactive, click its border to make it active.

2. Choose Insert | Symbols in the menu bar.
3. When the Select Symbol to Watch box appears, do the following in it:

a. Choose a symbol table from the list under Available Tables.

56

Note

Working With Testplans
Debugging Testplans
b. Choose a symboal from the list under Available Symbols.
c. Choosethe OK button.

For more information about symbol tables, see “Using Symbol Tables” in
Chapter 5.

To Insert a Switching Node into the Watch Window

1. With a testplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

If the Watch window is not visible, choose Window | Watch. If the Watch
window is visible but inactive, clicks its border to make it active.

2. Choose Insert | Switching Node in the menu bar.

Tip: As a shortcut when setting watches on all switching nodes, choose
Insert | All Switching Nodes.

3. When the Select Switching Node box appears, do the following in it:
a. Choose a node from the list.

Tip: If desired, you reduce the number of nodes that appear in the list
by choosing a Filter from the list.

Tip: If desired, you can sort the list of nodes by selecting the Sort
Node Names check box.

b. Choose the OK button.

For more information about switching nodes, see “About Switching
Topology” in Chapter 3 of th&etting Sarted book.

Tolnsert an Instrument into the Watch Window

This feature is enabled only when using specific instrument drivers provided
by Hewlett-Packard.

57

Working With Testplans
Debugging Testplans

1. With atestplan loaded, make sure the Watch window is active; i.e., its
border is highlighted.

If the Watch window is not visible, choose Window | Watch. If the Watch
window isvisible but inactive, click its border to make it active.

2. Choose Insert | Instrument in the menu bar.

3. When the Select Instrument box appears, do the following in it:
a Choose an instrument from the list.
b. Choose the OK button.

To Remove an Item from the Watch Window

1. Inthe Watch window, select the item to be removed.

If the Watch window is not visible, choose Window | Watch. If the Watch
window isvisible but inactive, clicksits border to make it active.

2. Choose Edit | Delete in the menu bar.

58

Working With Testplans
Fine-Tuning Testplans

Fine-Tuning Testplans

A testplan isonly as good asthe testsin it. Good tests are fast, reliable, and
accurate. After you have your tests and testplan running, you may want to
consider taking the steps described in the following topics to fine-tune your
results.

Optimizing the Reliability of Testplans

Several waysto improve the reliability of your testplans are:

Debug known problems in actions and tests as needed.

For example, you can use the debugging features of the language used to
create actions to debug actions. And you can use features in the Test
Executive that control the running of testplans to pause on a test, skip a
test, and such while debugging tests.

Run testplans for a prolonged period, such as overnight, to verify the
reliability of the tests in therh.

Tip: To run repetitively a testplan, use the “Loop for count” or “Loop for
time” options under Sequencer Repeat on the Execution tab in the
Testplan Options box (Options | Testplan Options).

Sequencer Repeat

O Loop for bime [d:h:m:s] |0-00-00:00

Run testplans with datalogging on and examine the results for
consistency.

1. If you do this, you may want to turn off datalogging to prevent log records
from potentially filling your hard disk.

59

Working With Testplans
Fine-Tuning Testplans

For example, you might turn on datalogging and run the testplan to
collect data about asingle UUT or agroup of UUTs. If the data are
inconsistent, try to identify which test(s) is the problem and then fix it.

Deliberately stress your testplan by introducing conditions that can cause
exceptions, and add fixes as needed.

For example, you might see what happens if an instrument “times out”
without returning a reading. Or, you might deliberately test UUTs whose
performance is grossly outside the normal limits.

Optimizing the Throughput of Testplans

Suggested Waysto M ake Testplans Run Faster

Some ways in which you can make your testplans execute faster are:

Use test groups to do slow actions outside of tests or to eliminate
redundant tasks.

If you have a group of tests whose setup/cleanup needs are alike, insert
those tasks once, at the beginning of a test group that includes the group
of tests, instead of inside each test. An example of this might be
initializing power supplies or setting up instruments that require similar
setups for more than one test. If several tests require positive sources, do
the tests as a group. Or, if several tests require the same UUT setting, do
the tests as a group.

Use triggers for fast synchronization of tests.

For example, avoid synchronizing to slow cycle waveforms. Also, avoid
controller-induced test delays.

Find faster ways to do tests.
For example, use a DMM instead of a slower digitizer.

Use HP TestExec SL's profiler feature (described below) to optimize the
actions inside tests in a testplan.

60

Note

Working With Testplans
Fine-Tuning Testplans

Using the Profiler to Optimize Testplans

HP TestExec SL includes a profiler you can use to see how long each action
or test group in atestplan takes to execute. Once you know how long each
action or test group takes to execute, you can decide where to begin the
“tuning” process, and monitor any improvements you make.

After enabling the profiler, you run a testplan to collect data, and then either

view Pareto charts directly in HP TestExec SL or use a financial spreadsheet
program to further analyze the data. As shown below, the profiler display in

HP TestExec SL lists actions or test groups in order from slowest to fastest,

and shows how long each took to complete.

¥ Action Sum Pareto List | _ O] x|

Action Sum Pareto List

Profiler Demo 0.035

AddTwolntegers 0.0m

I T T T T 1
0.000 0.010 0.020 0.030 0.040 0.050

Time [in seconds]
Testplan Name: C:ATemp\Goldibin\ProfilerDemo.tpa
Current Testplan Yariant: Normal
Current Date and Time: 08{/23/96 06:56:26

Each time you run the testplan, profiler data from the previous run is
discarded. If a testplan aborts, its profiler data is lost. Also, the profiler is
automatically turned off whenever you exit a testplan.

Because the profiler can significantly degrade HP TestExec SL's
performance, you probably will not want to run it during production testing.

To Set Up the Profiler
Before you can use the profiler, you must enable it.
1. Choose Options | Testplan Options in the menu bar.

2. In the Testplan Options box, choose the Profiler tab.

3. Enable the Enable Profiler check box.

61

Working With Testplans
Fine-Tuning Testplans

4. If, besides viewing the profiler datain HP TestExec SL, you want to save
the datain atab-delimited file for subsequent analysis, such asin a
spreadsheet, do the following:

a Sdlect the Save to File check box.

b. Either type the name of afile in the data entry field or choose the
Browse button and use the graphical browser to specify anamefor the
filein which the profiling data will be saved.

5. Choose the OK button.

To Run the Profiler

» With the profiler enabled, run the testplan as usual.

As the testplan runs with the profiler enabled, HP TestExec SL collects
data about the testplan.

To View Profiler Resultsin HP TestExec SL

1. After running the testplan with the profiler enabled to collect data,
choose View | Profiler Results in the menu bar.

2. Choose how you would like to see the data displayed.

Formats for displaying profiler data in Pareto charts include:

Sum of Action Execution Times Total time that actions in the
testplan took to execute. If an
action is used more than once, this
will be its accumulated time.

Average Action Execution Times Average time that actions in the
testplan took to execute. If an
action is used more than once, this
will be the arithmetic mean of each
execution time.

62

Working With Testplans
Fine-Tuning Testplans

Sum of Test Execution Times Total time that tests in the testplan
took to execute.

Average of Test Execution Times Average time that tests in the
testplan took to execute.

3. If you wish to limit the amount of data that appears, specify an aternate
value for Maximum Number of Itemsto Display.

4. Choose the OK button.

Tip: If desired, you can simultaneously view other types of Pareto charts
by choosing Profiler Pareto from the menu bar and choosing another type
when the viewer is active.

Tip: If desired, you can use File | Print Graph to print the results when the
viewer is active.

To View Profiler Resultsin a Spreadshest

When you use the profiler’'s Write to File option and specify a file name,
data is saved in a tab-delimited format suitable for examination with a
spreadsheet.

Hewlett-Packard also provides a worksheet (“profile.xls”) and an add-in
(“profile.xla”) you can use with Microsoft Excel as the starting point in
examining the data file's contents. These files are located in directory
“<HP TestExec S home>\samples\excelmacrosAs shown below, loading

63

Working With Testplans
Fine-Tuning Testplans

either of these files adds a Profiler option and related menu items to Excel’'s
menu bar.

m Toolz Data Window
Load Haw Data I—

: Test Pareto
Action Sum Pareto

[Action Std Dev Pareto
Action Average Pareto
Action Min Pareto
Action Max Pareto
Action Occurrence Pareto

64

Working With Testplans
Moving a Testplan

Moving a Testplan

You may want to develop testplans on a central development system that is
fully configured even if you intend to use them elsewhere. That way, not
every test system needs afull set of hardware resources for compatibility;
i.e., each destination system needs only the subset of the development
system’s resources that are required to run a specific testplan.

Once you have developed and debugged a new testplan on the devel opment
system, you probably will want to releaseit to your production environment.

For example, if you intend to run the testplan on more than one test system,
you must copy the appropriate files to other systems. Also, you probably

will want to make a backup copy of the completed testplan “just in case.”

Do the following to move a testplan from your development system to
another syster:

» Be sure the destination system has all the hardware resources needed to
run the testplan.

« Copy the testplan file—i.e.téstplan_name.tpa”—to the destination
system.

« Be sure all the files used by actions in your testplan exist on the
destination system. These include “*.umd” files and executable libraries.

Tip: You can use View | Listing | Actions to list the contents of actions in
a testplan. Or, you can use an audit listing to show all the files used by a
testplan.

« Copy the topology files for the fixture and UUT layers (“fixture.ust” and
“uut.ust” files or equivalent) to the destination system.

« |f external symbol tables are associated with the testplan, copy them
(“*.sym” files) to the destination system.

1. Thedirectory structure on the destination system can be different from the
directory structure on the development system.

65

Caution

Working With Testplans
Moving a Testplan

» Verify that the datalogging options are the same across the systems:

Be sure the [Data Log] section in the “tstexcsl.ini” file on the
destination system identifies the format and definition files you wish
to use when datalogging.

Be sure the datalogging options for the testplan (Options | Testplan
Options | Reporting) reflect the settings you wish to use on the
destination system.

Be sure the destination system's topology file for the system layer
(“system.ust”) is the same as or a superset of the file on the
development system.

Be sure to remove any flags, such as skipped tests or breakpoints, if
you are moving the testplan to a system used for production testing.

Flags left in the testplan can cause the operator interface to behave
incorrectly. For example, a breakpoint flag can cause the testplan to stop
executing prematurely and leave the operator interface “hung.”

For more information about flags, see “Using Interactive Controls &
Flags.”

For suggestions about setting up library search paths to optimize the
portability of testplans, see “Using Search Paths to Improve Testplan
Portability” in Chapter 5.

66

Working With Tests & Test Groups

This chapter describes how to use tests, which are a sequence of actions
executed as a group to do some form of testing, and test groups, which are
primarily away of structuring tests.

For an overview of tests and test groups, see Chapter 3 in the Getting Sarted
book.

67

Working With Tests & Test Groups
Specifying Parameters for a Test/Test Group

Specifying Parametersfor a Test/Test Group

To Add a Parameter to a Test/Test Group

1. With atest or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose the Insert button.

3. Specify the parameter’s characteristics.
See “Specifying the Properties for Parameters & Symbols” in Chapter 3
of the Getting Sarted book for general information about specifying
parameters.

4. Choose the OK button.

Tip: If you enter more than one parameter, you can use the Move Up and

Move Down buttons to rearrange the order in which parameters appear in the
list.

Modifying a Parameter for a Test/Test Group

1. With a test or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose a parameter in the list under Parameters for Test/Test Group
‘<name>’.

3. Choose the Edit button.
4. Modify the parameter’s characteristics.
See “Specifying the Properties for Parameters & Symbols” in Chapter 3

of theGetting Sarted book for general information about specifying
parameters.

68

Working With Tests & Test Groups
Specifying Parameters for a Test/Test Group

5. Choose the OK button.

Tip: You can use the Move Up and Move Down buttons to rearrange the
order in which parameters appear in the list.

To Remove a Parameter from a Test/Test Group

1. With atest or test group selected in the left pane of the Testplan Editor
window, choose the Test/Test Group Parameters tab in the right pane.

2. Choose a parameter in the list under Parameters for Test/Test Group
‘<name>’.

3. Choose the Delete button.

4. Choose the OK button.

69

Note

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

Specifying Actionsfor a Test/Test Group

Because actions | et tests do useful tasks, tests typically have actions
associated with them. Test groups, however, can be useful even without
having actions associated with them. For example, you might use test groups
simply as aids in structuring your testplans.

To Add an Action to a Test/Test Group

Be sure the search paths for action libraries are set up correctly or you may
not be able to find the action you want; see “Specifying the Search Path for
Libraries” in Chapter 5.

1. With the desired test or test group selected in the left pane of the Testplan
Editor window, choose the Actions tab in the right pane.

2. Click in the list under Actions for Testtest name>’ to specify where to
insert an action into the test.

The action will be inserted immediately before the line selected as the
insertion point.

70

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

3. Do either of the following:

If the action is a... Do this...

switching action a.

b.

regular action a.

Choose the Insert Switching button.

Double-click the switching action in the list
under Parameters for “Switching”.

When the Switching Action Editor box appears,
use it to specify the switching paths.

See “Controlling Switching During a Test” for
detailed information about creating switching
actions.

Choose the Insert button.

When the Select an Action to Insert box
appears, use it to find the desired action and
insert it into the test.

For more information about using the Select an
Action to Insert box’s search features, see
“Searching for Iltems in a Library” in Chapter 5.

Specify the action's parameters and limits (if it
returns a result) as needed.

See “Specifying the Properties for Parameters
& Symbols* in Chapter 3 of the Getting Sarted
book for general information about specifying
parameters. Specific procedures for specifying
parameters and limits are described in the next
couple of topics.

Tip: Choose the Move Up and Move Down buttons to rearrange the order in
which actions appear in thelist.

Tip: Choose the Details button to examine the action’s definition.

71

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

To Specify Parametersfor Actionsin a Test/Test Group

1. With atest or test group selected in the left pane of the Testplan Editor
window, choose the Actions tab in the right pane.

2. Click to select an action in the list under Action for Teséskname>'.

3. Double-click a parameter in the list under Parameters for
‘<action name>’.

4. When the Edit Symbols box appears, use it to specify a new value for the
parameter.

Tip: If an entry in the Name column is italicized, its associated value is
the default specified when the action was created. If it is not italicized,
the default value has been overridden by a new value.

Tip: Pressing the mouse's right button on a parameter invokes a menu
from which you can edit the parameter’s value, associate the parameter
with a symbol in a symbol table, or reset the parameter’s value to its
default.

Tip: An @ sign precedes values that reference items in symbol tables.

5. Choose the OK button.

To View Parametersfor Actionsin a Test/Test Group

1. In the left pane of the Testplan Editor window, select a test or test group.
2. Choose the Actions tab in the right pane of the Testplan Editor window.
3. Click an action in the list under Actions for Testest name>'.

4. Examine the parameter names and values that appear in the list under
Parameters for ‘action name>'.

Tip: To examine the details of a parameter, double-click the parameter.

72

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

To Specify the Limitsfor a Test

Note Although you can use an execute action in atest group, an execute action in
atest group cannot return aresult for limits checking. Only tests can be used
for limits checking.

1. Intheleft pane of the Testplan Editor window, select the test for which
you wish to set limits.

2. Choosethe Actionstab in the right pane of the Testplan Editor window.

3. Verify that the execute action chosen to return results for limits checking
in the list under Actions for Testtest name>' is the one you want. If it
is not, select the correct one, right-click on it, and choose “Limit check
this measurement” from the menu that appears.

Note: An asterisk (*) appears in front of the name of the execute action
chosen for limits checking.

4. With the desired action selected on the Actions tab, choose the Limits
tab.

5. If you wish to specify a different limits checker for the action that returns
results for the test, click the arrow to the right of “Limit Checker” and
select a different one from the list.

6. Double-click the Value field for a limit in the list under Limit Values.

7. When the Edit Limit Value box appears, use it to specify a value for the
limit.

Tip: Pressing the mouse's right button on a limit invokes a menu from
which you can edit the limit’s value, associate the limit with a symbol in
a symbol table, or reset the limit's value to its default.

Tip: As a shortcut when specifying parameters and limits, you can choose
the Limits button on the Actions tab and quickly switch to a view of the
action’s limits without leaving that tab. To return to viewing the action’s
parameters, click the action in the list of actions.

73

Working With Tests & Test Groups
Specifying Actions for a Test/Test Group

8. Choose the OK button.

To Remove an Action from a Test/Test Group

1. With atest or test group selected in the | eft pane of the Testplan Editor
window, choose the Actions tab in the right pane.

2. Click to select an action in the list under Action for Teséskname>'.

3. Choose the Delete button.

74

Working With Tests & Test Groups
To Save a Test Definition in a Library

To Save a Test Definition in aLibrary

Saving test definitionsin alibrary lets you reuse them as needed, which
reduces the amount of work required to create new testplans.

1. With atest selected in the left pane of the Testplan Editor window,
choose File | Save Test Definition in the menu bar.

2. Inthe Test Name field of the Save a Test Definition box, specify a name
for the test.

3. If thetest has multiple variants, use the list to choose the variant for the
version you wish to save.

4. (optional) Inthe Author's Name field, enter the name of whoever created
the test.

5. (optional) Enter the test’s version number, if it has one.

6. (optional) Enter adescription of the test.

7. (optional) Select one or more keywords, one at atime, in thelist under
Available and choose the Add button to copy them to the list under
Selected Keywords.

Tip: If desired, you can click the blank areain the list under Selected
Keywords and create new keywords by typing them there.

See “How Keywords Simplify Finding Items in Libraries” in Chapter 5
for more information about keywords.

8. Choose the OK button.

9. When the Save As box appears, specify a file name in which to save the
test.

10.Choose the Save button.

75

Note

Working With Tests & Test Groups
To Save a Test Definition in a Library

Although entering optional information is more work initially, it can save
time when you reuse code. For example, knowing the author’s name tells
you who to contact if you have a question about the test. Or, being able to
search by keyword makes it easier to find specific tests later.

76

Working With Tests & Test Groups
To Pass Results Between Tests/Test Groups

To Pass Results Between Tests/Test Groups

If desired, you can pass the results from one test or test group to another test
or test group. A result is passed as a parameter to an action.

1.

With atestplan loaded, in the | eft pane of the Testplan Editor window
select the test or test group from which you wish to pass results.

Choose View | Symbol Tables in the menu bar.

When the Symbol Tables box appears, useit to declare anew variable in
either the Sequencel ocals symbol table or in an external symbol table.

Note: If you use the Sequencel ocals symbol table, be sure the sequence
shown in the left pane of the Testplan Editor window is the desired one.
You cannot use Sequencel ocals to pass results between sequences.

For information about declaring variables, see “Specifying the Properties
for Parameters & Symbols” in Chapter 3 of @®etting Sarted book. For
information about the mechanics of using symbol tables, see “Using
Symbol Tables” in Chapter 5.

In the right pane of the Testplan Editor window, select an action (in the
list under Actions for Test test name>' on the Actions tab) that has a
parameter you wish to pass from the test or test group selected in the left
pane.

Double-click the Name of the parameter in the list under Parameters for
‘<action name>’.

When the Edit Symbol box appears, enable Reference a Symbol if it is
not already enabled.

Use the Search list to select the symbol table that contains the shared
variable you created earlier.

Use the Reference list to select the name of the shared variable you
created earlier.

77

Working With Tests & Test Groups
To Pass Results Between Tests/Test Groups
9. Choose the OK button.

10.1n theleft pane of the Testplan Editor window, select the test or test group
that is to receive the results.

11.1n the right pane of the Testplan Editor window, select an action (in the
list under Actions for Test test name>’) with a parameter that is to
receive the passed value.

12.Double-click the Name of the parameter in the list under Parameters for
‘<action name>’.

13.When the Edit Symbol box appears, enable Reference a Symbol if it is
not already enabled.

14.Use the Search list to select the symbol table that contains the shared
variable.

15.Use the Reference list to select the name of the shared variable being
passed.

16.Choose the OK button.

78

Working With Tests & Test Groups
To Share a Variable Among Actions in a Test/Test Group

To ShareaVariable AmongActionsin a Test/Test
Group

Declaring avariable whose scopeisatest or test group lets actions inside the
test or test group share that variable.

1. With atestplan loaded, in the left pane of the Testplan Editor window
select the test or test group whose actions are to share alocal variable.

2. Choose the Edit Symbols button on the Actions tab in the right pane of
the Testplan Editor window.

3. When the Symbols for Test/Test Groupest/test group name>’ box
appears, choose its Insert button.

4. When the Insert Symbol box appears, use it to declare a new variable and

then choose its OK button.

For information about declaring variables, see “Specifying the Properties

for Parameters & Symbols” in Chapter 3 of (Beiting Sarted book.

5. Choose the OK button in the Symbols for Test/Test Grotgst/test
group name>' box.

6. Do the following for each action that contains a parameter you wish to

have share the newly defined symbol:

a. Select the desired action in the list under Actions for Test/Test Group

‘<test/test group name>’ on the Actions tab.

b. In the list under Parameters fomgtion name>’, double-click the

Name of the parameter you wish to associate with the shared variable

in the symbol table.

c. When the Edit Symbol box appears, enable Reference a Symbol if it is

not already enabled.

d. Select the TestStepLocals symbol table from the Search list.

79

Working With Tests & Test Groups
To Share a Variable Among Actions in a Test/Test Group

e. Usethe Reference list to select the name of the variable you created
earlier.

f. Choose the OK button.

80

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

Controlling Switching During a Test/Test Group

Switching is dependent upon switching topology, which defines atest
system’s switchable connections. Switching topology is explained in
Chapter 4.

Overview of Creating a Switching Action

If you are using hardware handler software to model your test system's
switching hardware and you have used the Switching Topology Editor to
describe your topology to the Test Executive, you can:

1. Use the right pane of the Testplan Editor window to insert a switching
action into your test or test group, as shown below.

Test Group Mame: I 1/0 Configure

Surnrnan: I

Test Group Parameters | Actions | Documentation

Actions for Test Group ' 1/0 Configure’ Insett... |

Switching

Move Up |
bdonee Digwan |

Ingert §witching|

— Description of "Switching'

Specify ane or more switch paths to be closed.

Edit Symbs... |

— Pararneters far "Switching”

Yalue Drezcription I;I
Pathz Specify one or more gwi

81

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

2. Usethe Switching Action Editor, which is shown next, to specify what
action the switching paths should take at the beginning and end of the test
or test group: open, close, or restore the previous state.

Switching Action Editor E

|Jge this editor to gpecify the lizt of initial switch settings for this test step, The systemn wil
enzure that these connections are in place during the execution af this test.

r Imitial Path List
[+15P5_+] Add Path... |
[15 DC/DC Converter - Input PS_-]
[GMD PS_-] -
[GHD DE/DC Converter + Input P5S_+] Edit Path,... |
Delete Path |
Al Test Setup At Test Cleanup
& Connect Paths 7 Cornect Paths
™ Disconnect Paths ¥ Disconnect Paths
' Undo Setup Paths

Canicel

82

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

3. Usethe Switching Path Editor to define the actual connections needed for
the test or test group.

Switching Path Editor B
Uze thiz dialog to define/edit/view a switch path.

Current Path Cancel |

~Modes r Selected Mode Information
Fiter. | | =] | | Description
Output of the filker,
ROOT
Wetwark, Analyzer
Foaut

I etwark, Analyzer

Network &nal
Scope 0 via: [Sw2[21]

Alternate Mames:
S Z.COM

¥ Sort node names

Select Back Up

83

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

Information shown in the Switching Path Editor includes:

Current Path The switching path currently in effect. The name of a
node in a switching module is separated from the
name of the module by a colon, like this: <module
name>:<node name>. Two nodes in a switching path
are separated by a space.

Nodes The hierarchy of items in the switching path shown
under “Current Path.” Each item in the hierarchy
represents a node that potentially can be connected
to other nodes. As the hierarchy expands, subsequent
levels show additional paths to which the selected
node can be connected; i.e., nodes that are adjacent
to the selected node.

Via Identifies the switching element used to make the
selected connection.

Alternate Names Other names, such as aliases, for the selected node.

To Create a Switching Action

1. Intheleft pane of the Testplan Editor window, select the test or test group
to which you wish to add a switching action.

2. Choose the Actions tab in the right pane of the Testplan Editor window.

3. Click the desired insertion point in the list under Actions for Test/Test
Group ‘<est/test group hame>'.

Tip: Use the Move Up and Move Down button to rearrange items in the
list of actions.

4. Choose the Insert Switching button on the Actions tab.

5. Double-click in the Value field under Parameters for “Switching”.

84

6.

9.

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

In the Switching Action Editor box, repeat the following steps for each
switching path you wish to add:

a. Choose the Add Path button.

b. Use the Switching Path Editor box to specify the switching path.

Choose an option under At Test Setup to specify what happensto this
group of switching paths when the test or test group begins:

Connect Paths Switching paths will be closed

Disconnect Paths Switching paths will be opened

Choose an option under At Test Cleanup to specify what happens to this
group of switching paths when the test or test group ends:

Connect Paths Switching paths be closed

Disconnect Paths Switching paths will be opened

Undo Setup Paths Switching paths will be restored to the state
they were in prior to the test or test group; i.e.,

whatever was done under At Test Setup will be

undone

Choose the OK button.

To Delete a Switching Action

1.

In the left pane of the Testplan Editor window, select the test or test group
that contains a switching action you wish to delete.

Choose the Actions tab in the right pane of the Testplan Editor window.

Click the switching action to be removed from the list under Actions for
Test/Test Group ‘test/test group name>'.

Choose the Delete button on the Actions tab.

85

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

To Specify a Switching Path in a Switching Action

1. Inthe Switching Path Editor box, double-click itemsin the list under
Nodes to “build” a switching path.

Each item in the hierarchical list represents a node that potentially can be
connected to other nodes. Double-clicking a node that represents an
instrument or other resource expands it into a list of bus nodes to which it
is connected. Double-clicking a node that represents a bus further
expands the list into other nodes to which that bus can connect.

Tip: Click a keyword in the Filter list to reduce the number of nodes that
appeatr.

Tip: If you'd like for the nodes in the list to appear in alphabetical order,
check the box adjacent to “Sort node names”.

Tip: The field under Current Path shows the current series of
connections.

Tip: You can click a node and find information about it in the box under
Current Node Description.

Tip: Just as clicking items lower in the hierarchy of nodes adds them to
the list, clicking higher in the hierarchy removes items. Double-click
ROOT to return to the top of the hierarchy of items.

2. Choose the OK button.

To Modify a Switching Path in a Switching Action

1. Onthe Actions tab in the right pane of the Testplan Editor window, select
a switching action by clicking it in the list under Actions for Test/Test
Group ‘<est/test group name>'.

2. Double-click in the Value field under Parameters for Action
‘<action name>'.

3. In the Switching Action Editor box, click a switching path that appears
under Initial Path List.

86

Working With Tests & Test Groups
Controlling Switching During a Test/Test Group

4. Choose the Edit Path button.

5. Madify the switching path as needed.

To Delete a Switching Path in a Switching Action

1. OntheActionstabintheright pane of the Testplan Editor window, select
aswitching action by clicking it in the list under Actions for Test/Test
Group ‘<est/test group name>'.

2. Double-click in the Value field under Parameters for Action
‘<action name>'.

3. In the Switching Action Editor box, click a switching path that appears
under Initial Path List.

4. Choose the Delete Path button.

5. Click OK.

87

Working With Tests & Test Groups
Specifying Variations on Tests/Test Groups When Using Variants

Specifying Variationson Tests/Test GroupsWhen
Using Variants

Overview

Each variant of atestplan lets you create a potentialy unique variation on
the parameters and limits associated with the tests and test groupsin that
variant. Because they let you use one testplan with n different sets of test
limits and parameters, variants are useful where one UUT isvery similar to
another except for dightly different values for itstest limits or parameters.

The general procedure for specifying the characteristics of tests or test
groups when using variantsis:

1. Choose atestplan variant
2. Choose atest or test group
3. Specify the characteristics of the test or test group for that testplan variant

Later, when running the testplan, you can specify which variant to use.

To Specify a Test/Test Group’s Characteristics for Each
Variant

Repeat the following steps for however many variants your testplan has:
1. Choose Options | Testplan Options in the menu bar.

2. On the Execution tab in the Testplan Options box, choose a variant from
the list under Testplan Variant and choose the OK button.

3. Sdect atest or test group in the left pane of the Testplan Editor window.

4. Usethe features on the tabs in the right pane of the Testplan Editor
window to specify the characteristics for this variation of the test or test

group.

88

Working With Tests & Test Groups
Specifying Variations on Tests/Test Groups When Using Variants

Tip: If you would simply like to examine the characteristics of tests or test
groups for each testplan variant, follow the steps above but do not change
anything.

For a conceptual overview of variants, see “Testplan Variants” in Chapter 3
of theGetting Sarted book. For information about creating or modifying
variants of testplans, see “Using Variants in Testplans” in Chapter 1.

89

Working With Tests & Test Groups
Using Test Limits

Using Test Limits

To View the Limitsfor Testsin a Testplan

Limits are listed by test name, and show the name of the result (if any)
returned by the test, and the low and high values for each of the chosen
variants.

1. With atestplan loaded, choose View | Limitsin the menu bar.

2. If your testplan uses multiple variants, do the following:

a. Sdect aview of the limits by clicking the Variants button.

b. When the Display Variants for Test Limits box appears, useit to
choose which testplan variants to view by doing one of the following:

» Click Single and then choose one variant.
» Click All to choose all variants.

e Click Multiple and then choose one or more variants as a group.

Note Variants become highlighted when you choose them.

c. Choose the OK button to return to the Test Limits Editor box.

Tip: If you choose more than a couple of variants, you probably will need
to resize the Test Limits Editor box or scroll horizontally in the list to see
all of the test and limits.

3. When you have finished viewing limits, choose the Close button.

90

Working With Tests & Test Groups
Using Test Limits

To Modify the Limitsfor Testsin a Testplan

Limits are listed by test name, and show the name of the result (if any)
returned by the test, and the low and high values for each of the chosen
testplan variants.

1. With atestplan loaded, choose View | Limitsin the menu bar.

2. If your testplan uses multiple variants, do the following:

a. Sedect aview of the limits by clicking the Variants button.

b. When the Display Variants for Test Limits box appears, useit to
choose which testplan variants to view by doing one of the following:

e Click Single and then choose one variant.
e Click All to choose all variants.

e Click Multiple and then choose one or more variants as a group.

Note Variants become highlighted when you choose them.

c. Choose the OK button to return to the Test Limits Editor box.

Tip: If you choose more than a couple of variants, you probably will need
to resize the Test Limits Editor box or scroll horizontally in the list to see
all of the test and limits.

3. Click a value in one of the Limit Value columns to select it.
4. Modify the value as needed. You can:

» Type a new value directly into the selected cell.
- Or‘ -

» Choose the Edit button to invoke a dialog box that lets you edit the
limit.

91

Working With Tests & Test Groups
Using Test Limits

Caution When you make changes, they are effective immediately; i.e., thereisno
verification or “undo” feature.

Tip: You can use the Copy and Paste buttons to copy or paste values from
one cell to another.

5. When you have finished modifying limits, choose the Close button.

92

Working With Tests & Test Groups
Viewing the Test Execution Details

Viewing the Test Execution Details

Overview

The Test Execution Details window lets you view the details of what will
happen when atest or test group is executed. The routines inside actions are
listed in the order in which they are executed.

Suppose the following list of actions appeared in atest group.

Test Group Parameters | Achions Dncumentatinnl

Actionz far Test Graup 'Time Darmain'

Iritialize Module
Digitize Signal
Switching

An annotated example of how the Test Execution Details window would
look when examining this test group looks like this:

Test Execution Details E

Action

-l

SETUP OR E<ECUTE:

Routine

Open [nstrument

I0_Open_Module setup component in setup/cleanup

Initialize Module Initizlize_Module execute action

Dig.itize-: Signal Dig_itizg_Wavefnrm execute action

Switching Switching setup component in switching
CLEAMUP:

Action R outine

Switching Switching cleanup component in switching —

Open Instrument [0_Cloge_Module cleanup component in setup/cleanup—

93

Working With Tests & Test Groups
Viewing the Test Execution Details

The window contains two columns. The left column lists the names of
actionsin the test or test group, and the right column lists the names of
routines in those actions. The information is further organized into rows that
list the action and their components in the order in which they are executed.

The Test Execution Details window shows that the test group in the example
contains four actions: Open | nstrunent,lnitialize Mdule,

Di giti ze Signal,and one switching action. The action named Cpen

| nst runent isasetup/cleanup action because it is listed under both
SETUP OR EXECUTE and CLEANUP. BothI niti ali ze Mydul e and
Digitize Signal areexecute actions because they appear only under
SETUP OR EXECUTE, and not under CLEANUP.

To View the Test Execution Details

1. With atestplan loaded, click atest or test group in the left pane of the
Testplan Editor window.

2. Choose View | Test Execution Details in the menu bar.

3. When you have finished examining the details of the test or test group,
choose the OK button.

94

Working With Actions

This chapter describes how to use actions, which are components used to create
tests.

For an overview of actions, see Chapter 3 in the Getting Sarted book.

95

Working With Actions
Things to Know Before Creating Actions

Thingsto Know Before Creating Actions

Note Thetopicsin this section apply to all types of actions. Subsequent sections
describe how to create actions in specific programming languages.

How Do | Create Actions?

An action consists of two discrete components: adefinition that describes

the action’s characteristics to the Test Executive enviroﬂmmmd action
routines (code) that each do one or more tasks.

Action

Definition

Routines

Given the model above, creating an action is a two-part process:

1. Creating the action definition.
You use the Action Definition Editor to define the action’s characteristics
and identify (but not write) the underlying code associated with the

action. Each action definition contains the following information:

e The action “style,” which adjusts the Action Definition Editor’s
behavior to match your choice of programming language.

* The name of the action.

« The name of the DLL or other library file in which the action’s
executable code resides.

1. It may help if you think of defining an action as using the Action Definition
Editor to “register” the action with the Test Executive.

96

Working With Actions
Things to Know Before Creating Actions

* The name of the action’s author.
e A description of the action.

« Keywords that help when searching for the action if someone wishes
to reuse it later.

e The type of action routine—execute or setup/cleanup. (Typically,
most of the actions you use will be execute actions.)

» Definitions of parameters used in the action, including their data
types, default values, and descriptions.

2. Creating the action routines.

You use the editor, debugging tools, and environment of your chosen
programming language to write the code for action routines.

In most cases, you can do these two main steps in any order. For example,

you may prefer to write the action routine first and then create a definition
for it later.

Which Languages Can | Useto Create Actions?

You can write action code in:

e Visual C++ Version 2.0 or higher, 32-bit versions only. (Highly
recommended)

e Borland C++, Version 4.0 or higher, 32-bit versions only.
« HP VEE, Version 3.2 or higher for Windows 95.
* National Instruments LabVIEW, Version 4.0 or higher for Windows 95.

« HP BASIC for Windows 6.3.x.

Note You can freely mix actions in various languages so long as they do not
access the same instruments within the same testplan. This restriction is

97

Note

Working With Actions
Things to Know Before Creating Actions

necessary because each language is unaware of the other. For example,
suppose an action written in C sets an instrument to a particular state.
Because it operates in a separate environment, a subsequent action written in
HP VEE would be unaware of that state and might inadvertently change it.
And, of course, if another C action followed the HP VEE action, it would
not be aware of any changes made in HP VEE.

I mproving the Reusability of Actions

Designing for Reusability

HP TestExec SL has features that help you reuse action definitions and
action routines. To maximize the potential for reusing actions, keep the
following in mind when creating them:

» Use a directory structure to organize similar actions into libraries.

For more information about libraries, see “Using Test & Action
Libraries” in Chapter 5.

« Use the Action Definition Editor's documentation features—keywords,
action naming, action descriptions, and parameter descriptions—as an
aid to making actions easy to find and use in each library.

» Reuse or modify an existing action whenever possible. Write new actions
only when no other existing action will work.

You can add new parameters to an existing action and have existing tests that
use that action continue to work. Simply specify a default value for each new
parameter. Because existing tests will not override the default values of new
parameters, the modified action will mimic its previous behavior.

» Short actions that do a single task have greater reusability than more
complex actions. When possible, break larger test operations into a
shorter series of simple actions.

« Design commonly used actions for use by multiple test sequences. For
example, if you have more than one test sequence that requires setting up

98

Working With Actions
Things to Know Before Creating Actions

adigital-analog converter, you could create a separate action that does
the converter setup. You could then use that setup action in each of the
test sequences that use the converter.

e Use hardware handler software whenever possible (described in
Chapter 4).

Documenting Your Actions

Choosing Namesfor Actions

Each action consists of a definition file and a file that contains the action's

executable codéHaving a sensible and consistent naming convention helps
you organize and describe actions, which makes them self-documenting to
some extent. For example, you might use the convention of combining the
action name with the step where the routine will be used in the action, such
as “MyAction_Execute” or “MyActionSetup”. Or you could use the name of
the action to describe what the action does, such as “Trig\Volt” for an action
that triggers a voltage source or “MeasVolt” for an action that measures a
voltage.

For consistency, we recommend that you give the definition file the same
name as the action, followed by the extension “.umd”—for example,
“DMMSetup.umd”. Then name the code file in accordance with the action’s
function, followed by whichever extension is appropriate for the language in

which the action is writteA.An example of this might be “DMMSetup.dll”
for an action written in C.

Entering Descriptions for Actions

The Action Definition Editor lets you enter a textual description of each
action. The description should contain such information as:

» A description of what the action does.

1. Thecode can residein alibrary that also contains code for other actions.

2. If you create actions in HP BASIC for Windows, all the actions for agiven
testplan must reside in asingle file (server program). You may wish to give
that file the same name as the testplan with which it is used.

99

Working With Actions
Things to Know Before Creating Actions

The action's context, such as whether it is doing a setup, execute, or
cleanup function.

A list of any limitations.

A list of any special instructions, such as required switching or
accompanying actions.

For example, if you had an action that named “adcConfArm”, you could add
the description, “Configures the arming subsystem of the analog to digital
converter.”

Entering Descriptions for Parameters

You can use the Action Definition Editor to add a textual description to each
parameter in the definition of an action. In the description, you should tell
what the parameter does, its units of measure, and its range of valid values.

Choosing Keywordsfor Actions

As you create actions, you will probably store them in libraries from which
they will be used to create tests in the Test Executive environment. By
letting you associate one or more searchable keywords with each action, the
Action Definition Editor helps you quickly locate actions in libraries.

The keyword feature works best when you follow these rules:

Always assign keywords to actions. This speeds up the search features in
the Test Executive environment.

Use keywords from the predefined master list of keywords whenever
possible. Adding too many keywords increases the length of the search
list, which makes it harder to find a specific action. In general, you
should have fewer keywords than actions.

Add a keyword to the master list only if you can use it for other actions.

If you must create a new keyword, make sure the keyword is meaningful
and that it describes the action.

100

Working With Actions
To Define an Action

To Define an Action

Use the Action Definition Editor to create an action definition. The general
procedure for defining an action in al supported programming languagesis
described below. Subsequent topics describe the nuances of defining actions
in specific languages.

1.

2.

Choose File | New in the menu bar.

Choose “Action Definition” from the list.

Choose the OK button.

Choose an action style from the list, which contains:

DLL Style Action is written in in C/C++

HP VEE Action is written in HP VEE

LabVIEW Action is written in National Instruments LabVIEW
HP RMB Action is written in HP BASIC for Windows
Choose the OK button.

In the Name field, type the name of the action.

Tip: Choose a meaningful name that will help when you search for the
action later.

(optional) In the Author field, type your name to identify you as the
action's author.

In the Library Name field, type the name of the executable library file
(such as a DLL) that contains the action routines associated with this
action.

101

Working With Actions
To Define an Action

Note Leavethe Library Name field blank if you are defining an action created in
HP BASIC for Windows.

9. (optional) In the Description field, type a description of the action.

Tip: A useful description tells what the action does, gives the context in
which the action is used (such as whether it is doing a setup, execute, or
cleanup function), lists any limitations, and includes any special
instructions, such as required switching or accompanying actions.

10.(optional) Do either of the following to make it easier to locate the action
in an action library:

a. Sdect amaster keyword from the predefined list.

b. Choose the Add button adjacent to the list of keywords to add the
keyword to the action.

-0r -

a. If none of the existing master keywords fits the action, type a new
keyword in the keyword field.

b. Choose the Add button adjacent to thelist.

c. If thiskeyword will be useful with other actions, choose Edit | Add
Master Keyword in the menu bar.

11. Choose the Setup/Cleanup or Execute button to specify which kind of
action you are defining.

12.Type the names of one or more routines, functions, or subprograms
associated with this action (Setup, Execute, & Cleanup fields).

Tip: Useful, descriptive function names often combine the action name
with the step where the function will be used in the action, such as
“MyAction_Execute”.

102

Note

Note

Working With Actions
To Define an Action

13.Add parameters as needed by choosing the Add button at the bottom of
the Action Definition Editor and using the Insert Symbol box to specify
their properties.

For more information about specifying parameters, see “Using
Parameters with Actions.”

14 (optional) Specify auditing information by choosing File | Revision
Information in the menu bar and entering descriptive information in the
Action Revision Information box.

15.When you have finished defining the action, choose File | Save in the
menu bar, specify a name for the new action definition, and save it.

Not all parameter types can be used with all programming languages. Any
restrictions are noted in the topics that describe how to create actions in
specific languages.

If you choose “HP VEE” as the action style, an additional Debug check box
appears. Checking this box lets you start HP VEE in debug mode so you can
debug actions created using HP VEE. After you have finished debugging
your actions, unselect this box to return to HP VEE's run-time mode.

103

Working With Actions
Using Parameters with Actions

Using Parameterswith Actions

The topicsin this section describe the data types supported when passing
datain parameters to actions and the mechanics of using the Action
Definition Editor when working with parameters.

Types of Parameters Used With Actions

Each time an action is executed, the Test Executive can pass it one or more
parameters or a pointer to a group—called a “block”—of named parameters.
Passing specific parameters or a parameter block to the routines in an action
creates a unique instance of the action. For example, an action that sets up a
power supply might be passed parameters that define voltage and current
settings.

104

Working With Actions
Using Parameters with Actions

Overadl, the Action Definition Editor supports these types of parameters for

actions:

Type

Complex

Inst

Int32
Int32Array
Node
Path

Point

PointArray

Range

RangeArray
Real64
Real64Array
Real64Expr
String
StringArray

Description

Real — The real or magnitude component of a complex
number.

Imaginary—The imaginary or vector component of a
complex number.

The identifier for an instrument.
A 32-bit integer.

An array of 32-bit integers.
(reserved for future use)

A Switch Configuration Editor path name representing a
single switching path.

A pair of 64-bit real numbers, consisting of an X value and
a 'Y value.

An array of point data types, where each element consists
of an X value and a Y value.

A means of storing data that has a beginning, an end, and
an incremental step size, such as frequency sweep data.

An array of ranges.

A 64-bit real number.

An array of 64-bit real numbers.

The value of a 64-hit real expression.

A group of characters that make up a string.

An array of strings.

For more information about data types and how they are used, see Chapter 1
in the Reference book.

105

Note

Working With Actions
Using Parameters with Actions

Which gpecific parameter types you can use in an action definition depends
upon which action style you choose. Action styles are described in greater

detail later.

Properties you can define that are associated with parameters include:

Value

Reference

Output

Restrict
Value

Arrays

Sets literal values for parameters.

Selects a value by referencing the name of a symbol in a
predefined symbol table. For example, you could select an
instrument name from a hardware configuration table.

Note: Your ability to edit some parameters depends on the
“SymVal” security setting for your user login name or
group. See “Controlling System Security” in Chapter 6.

Designates parameters that will return results. You can
designate only one output per action definition. (Use array
parameters to pass multiple results.)

Note: You should only designate parameters of type Int32,
Int32Array, Real64, Real64Array, String, or StringArray as
Output because automatic limits checking is restricted to
these types.

For some data items, specifies the low and high limits for
permissible values for a data item or for all elements in an
array.

Specifies arrays of up to three dimensions for Int32, Point,
Range, Real64, and String data types. You can specify
values, designate values by reference, set point values, or
set range values for each element in an array.

To Add a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, click to

choose an insertion point in the list under Action Parameters.

2. Choose the Add button at the bottom of the Action Definition Editor.

106

Note

Caution

Working With Actions
Using Parameters with Actions

3. When the Insert Symbol box appears, type a Name for the parameter.
4. Choose aparameter Type from the list.
5. (optional) Enter a Description of the parameter.

6. Do thefollowing to specify adefault value, which you can assign an
actual value later when you use the action in atest, for the parameter:

a. Click Constant Value if the default value of the parameter contains a
literal value, or Reference to Symbol if it contains areferenceto a
symbol in asymbol table.

b. Do one of the following:

« If the parameter contains a reference to a symbol in a symbol table,
select the name of a Reference. If necessary, select which symbol
table to Search for the reference.

- or' -
» |f the parameter contains a value, specify its properties.

7. Enable Output if the parameter will be used to provide results for limits
checking, which determines the pass/fail status of a test.

If desired, you can specify more than one parameter in your action as an
Output. If you have more than one Output, use the drop-down list to the right
of “The current result is:” to specify which Output parameter to use for
limits checking.

8. Choose the Update button.

9. Choose the Close button.

If you make changes and choose Close without Update, your changes will be
discarded.

107

Caution

Caution

Working With Actions
Using Parameters with Actions

Tip: If you wish to add more parameters, choose New instead of Close.
Use Update to save each new parameter, and then choose Close at the end
of the session.

Tip: When working with alist of parameters, use the Move Up and Move
Down buttons to reorder the list.

To Modify a Parameter to an Action

1

With an action definition loaded in the Action Definition Editor, click a
parameter in the list under Action Parameters.

Choose the Edit button.

In the Edit Parameter box, modify the parameter’s characteristics as
needed.

Choose the Update button.

Choose the Close button.

If you make changes and choose Close without Update, your changeswill be
discarded.

To Delete a Parameter to an Action

1. With an action definition loaded in the Action Definition Editor, click a

2.

parameter in the list under Action Parameters.

Choose the Delete button at the bottom of the Action Definition Editor.

If you delete a parameter and exit the Action Definition Editor without
resaving the action definition, your change will be discarded.

108

Note

Note

Working With Actions
Using Keywords with Actions

Using Keywordswith Actions

The next severa topics describe the mechanics of working with keywords,
which you associate with actions to make specific actions easier to find
when searching libraries of actions.

To Add a Keyword to an Action
1. Do either of the following in the Action Definition window:
« Select a keyword from the list of master keywords.

-0r -

« If none of the predefined master keywords fits the action, type a new

keyword in the keyword box. The new keyword should clearly
identify the action's purpose. Typical keywords might be measure,
setup, instrument, or stimulus.

You can assign multiple keywords for an action.

Use existing master keywords whenever possible. Adding too many new
keywords can make it harder to find actions if the list of keywords becomes

too long to browse conveniently.
2. Choose the Add button adjacent to the list of keywords.

To Delete a Keyword from an Action

1. Inthe Action Definition window, click on the keyword you want to delete

from the list of keywords for the current action.

2. Choose the Delete button adjacent to the list of keywords.

109

Note

Working With Actions
Using Keywords with Actions

To Add a Master Keyword totheList
1. Do either of the following in the Action Definition window:
» Select a keyword from the list of keywords for the current action.
-or -
» Type a new keyword in the keyword box.

2. Choose Edit | Add Master Keyword in the menu bar.

Minimize the number of master keywords that you add. Keywords are most
useful when developers in an organization agree upon a standard, compact
set of keywords whose meaning is specific.

To Deletea Master Keyword from the List

1. In the Action Definition window, select a keyword in the list of master
keywords.

2. Choose Edit | Delete Master Keyword in the menu bar.

110

Note

Working With Actions
Creating Actions in C

Creating Actionsin C

Although most of this section describes using Visual C++ to create action

code, you do not need to know C++ to create actions. Some topics describe

C++ functionality for those who are familiar with C++, but in most cases

you can simply follow the examples and make your code work. Typically, all

you are doing is using a C++ compiler to produce C-like code; i.e., you are

not using the C++ extensionsto the C language. Thus, when you see

reference to a “C action,” it may help if you think of it as “C-like action code
written using a C++ development environment.”

The action routines in a C action reside in a DLL whose code you write and
compile. Each DLL can contain one or more action routines and, if desired,

you can add new actions to an existing DLYou must decide how many or
how few action routines to include in a single DLL.

What are the trade-offs? Using many small DLLs—for example, one DLL
per action routine—causes testplans to load more slowly than having one
large DLL that contains many action routines. However, using one large
DLL reduces the modularity of your test system. We recommend using a
single DLL to hold a logically related set of action routines, such as routines
that make DC measurements.

Overview of the Process

The general process to follow when creating an action in C is:

1. Use HP TestExec SL's Action Definition Editor to define the action by
specifying the name of the routine (or names if using a setup/cleanup
routine), parameters, descriptions, and keywords.

For more information, see “To Define an Action.”

1. The system DL Ls supplied with HP TestExec SL are read-only, and you
should not add new action routines to them.

111

Note

Note

Note

Working With Actions
Creating Actions in C

2. Use your C/C++ environment to create a header file (“.h") that declares
the functions in your actions and an implementation file (“.cpp”) to
contain the action source code.

Be sure to enclose your action code ireahern " C' declaration, as
shown in the examples, to prevent C++’s type-safe linkage scheme—i.e.,
“name mangling”—from causing problems when linking.

3. Write the code for the action routine.
4. Compile the source code to build a DLL.

5. Test/debug the DLL as needed.

Your C/C++ environment does not need to be running while you use
HP TestExec SL unless you are debugging an action and want to set
breakpoints in the C/C++ environment.

Writing C Actions

C actions use the DLL action style, which passes named parameters in a
block or collection that is a C structure. Instead of specifying each parameter
in a formal list, you pass a handle to the entire parameter block. Unlike a
formal list of parameters, individual parameters in a parameter block are
referenced by name and not by position.

Besides containing parameters used to pass values to action routines,
parameter blocks also can contain parameters that return results used for
limits checking. Thus, your C action code should not use an explicit “return”
statement to return a value.

Using Parameter Blocks With a C Compiler

If you do not have a C++ compiler, you can use DLL style actions by using
an API to access parameter values from a C compiler. The API provides a
function for getting the value of each parameter type. The form for the
function name is “UtaPbGet” or “UtaPbSet” plus the name of the parameter

112

Working With Actions
Creating Actions in C

type. For example, the following lines of code declare a variable whose type
is double and return avaueto it from a parameter named MyPar min a

parameter block.

doubl e dMyVari abl e;

Ut aPbGet Real 64(hPar nBl ock, "MyParnt, &JIMyVari able);
Listed below are the various API functions and the types of parameters with

which they are used.

This function name . . .

Gets/Sets a value for this parameter type

UtaPbGetComplex
UtaPbSetComplex

UtaPbGetlnst
UtaPbSetlInst

UtaPbGetInt32
UtaPbSetInt32

UtaPbGetInt32Array
UtaPbSetInt32Array

UtaPbGetNode
UtaPbSetNode

UtaPbGetPath
UtaPbSetPath

UtaPbGetPoint
UtaPbSetPoint

UtaPbGetPointArray
UtaPbSetPointArray

UtaPbGetRange
UtaPbSetRange

UtaPbGetRangeArray
UtaPbSetRangeArray

UtaPbGetReal64
UtaPbSetReal64

Complex

Inst

Int32

Int32Array

Node

Path

Point

PointArray

Range

RangeArray

Real64

113

Note

Working With Actions
Creating Actions in C

UtaPbGetReal64Array Real64Array
UtaPbSetReal64Array

UtaPbGetReal64Expr Real64Expr
UtaPbSetReal64Expr

UtaPbGetString String
UtaPbSetString

UtaPbGetStringArray StringArray
UtaPbSetStringArray

The following example shows how to use the API functions to access
parameter blocks.

To understand the differences between using C and C++ compilers, you may
find it useful to contrast this example with the similar example described
later under “Using Parameter Blocks With a C++ Compiler.”

/1l C action routine to programa DVM & return a reading.
/1 Parameter block was defined with these paraneters:

11 Resul t - Ut aReal 64

11 Function - Utalnt32

/'l Note: Use this routine with a C conpiler.

#i ncl ude <sicl. h>
#i ncl ude <uta. h>
#defi ne DEVI CE_ADDRESS " hpi b7, 23"

{
voi d UTADLL read_dvm (HUTAPB hPar nBl ock)

{
I ong | DVM Functi on;

/1l HP TestCore APl functions are used to return val ues
/1 fromthe paraneter bl ock.
Ut aPbGet | nt 32(hPar nBl ock, "Function", & DVM Function);

114

Working With Actions
Creating Actions in C

doubl e dRdg;

I NST instl D

instID = iopen (DEVI CE_ADDRESS) ;

iprintf (instlD, "FY@RAN3T3\r\n" , |DVM Function);
iscanf (instID, "%f\r\n" , &IRdg);

Ut aPbSet Real 64(hPar nBl ock, "Result", dRdQ);
iclose (instlD);
_siclcl eanup();

}

For more information about the API functions used in the example, see the
Reference book.
Using Parameter Blocks With a C++ Compiler

When you use a C++ compiler, HP TestExec SL's parameter types are
defined as C++ classes that behave like ordinary C data types. This lets you
write normal C code in action routines, except that variable declarations look
slightly different.

When you declare a normal variable in C/C++, its declaration looks like this:
<data type> <variable name>;

An example of this is:

I ong | MyVari abl e;
The syntax used when declaring variables for parameter blocks with a C++
compiler in HP TestExec SL looks like this:

<data type> <variable name> (<handleto parameter block>, <parameter
name or |D>);

The definition syntax lets you look up a parameter either by name or by ID.
An example of this is:

IUtaInt32 | MyVari abl e(hPar nBl ock, "MParaneter")

Here,l Ut al nt 32 is the C++ class that HP TestExec SL uses for long
(32-bit integer) datd. MyVar i abl e is the name of the variable being
declaredhPar nBl ock is the handle to a parameter block that contains
parameters being passed into the action roltinBar anet er is the name

115

Working With Actions
Creating Actions in C

of a parameter (defined with the Action Definition Editor) in the parameter
block whose vaue isto be passed to this variable.

What about other data types? The list below shows the correspondence
between the names of the C++ classes and the types of parameters supported
by HP TestExec SL.

This C++class. . . Corresponds to this parameter type

IUtaComplex Complex
IUtalnst Inst
[Utalnt32 Int32
IUtalnt32Array Int32Array
IUtaNode (reserved)
IUtaPath Path
IUtaPoint Point
IUtaPointArray (reserved)
IUtaRange Range
IUtaRangeArray (reserved)
IlUtaReal64 Real64
IUtaReal64Array Real64Array
IUtaReal64Expr (reserved)
IUtaString String
IUtaStringArray StringArray
IUtawaveform Waveform

116

Working With Actions
Creating Actions in C

What might an example of using a parameter block look like? Suppose you
used the Action Definition Editor to define an action whose parameter block
contained these parameters:

Parameter Name Parameter Type

Addend1 Int32
Addend2 Int32
Sum Int32

Asdefined in the Action Definition Editor, the parameter block would look
like this:

—a&ction Parameters
The current result is: ISum LI
Mame |'1.r'alut: |Typt: |Attrihutt:s |DE
Addendl 1] Int32
Addend? 0 Int32
Sum 1] Int32 OUTPUT

Inside an action routine written using a C++ compiler, you could then use
the specia declaration syntax to define three C variables corresponding to
the parameters, like this:

| Utalnt32 | Addend1(hPar nBl ock, "Addendl");
| Utal nt32 | Addend2(hPar nBl ock, "Addend2");
| Utalnt32 | Sunm(hParnBl ock, "Suni);

This declaration associates parameters in the parameter block with variables
inside the action routine. After declaring the variables, you can use them as
you would normal C variables of the corresponding type. For example, you
canusel Addendl, | Addend2, and| Sumaslongs (32-bit integers).

Shown below is an excerpt from a simple action routine that uses the
parameter block and variable declarations described above to add two
integers and return their sum.

117

Working With Actions
Creating Actions in C

extern "C" { // Prevent C++ conpiler fromusing nanme mangling
voi d UTADLL AddTwol nt eger sExecut e(HUTAPB hPar nBl ock)

{

/1 Declare local variables & associate themw th paraneters
/1 in paraneter bl ock.

| Utalnt32 | Addend1(hPar nBl ock, "Addendl");

| Ut al nt 32 | Addend2(hPar nBl ock, "Addend2");

I Utalnt32 | Sum(hPar nBl ock, "Suni);

/1 add the val ues together
| Sum = | Addend1 + | Addend2;

}

Something important to note here is that the result, Sum isreturned viaa
parameter in the parameter block and not through a return data type—i.e.,
there is no explicit “return” statement that returns the result. When using
parameter blocks, all passing of values between action code and

HP TestExec SL is done via parameters in the block.

A more extensive example of using parameter blocks looks like this:

/1l C action routine to programa DVM & return a reading.
/1l Note: Use this routine with a C++ conpiler.

#i ncl ude <sicl. h>
#i ncl ude <uta. h>
#defi ne DEVI CE_ADDRESS " hpi b7, 23"

extern "C'

{

voi d UTADLL read_dvm (HUTAPB hPar nBl ock)
{

/'l Use special syntax to declare two variables and associ ate them
/1l with paraneters in the paraneter bl ock.

| Ut aReal 64 dDVM Resul t (hPar nBl ock, "Result");

| Utalnt 32 | DVM _Functi on(hPar mBl ock, "Function");

118

Working With Actions
Creating Actions in C

I NST instlD
instID = iopen (DEVI CE_ADDRESS) ;
iprintf (instlD, "FY@RAN3T3\r\n" , |DVM Function);

iscanf (instID, "%f\r\n" , &IDVM Result);
iclose (instlD);
_siclcleanup();

}
}

The parameter block for the example above looks like this:

Parameter Name Parameter Type

Result Real64

Function Int32
The specia syntax for declaring C variables corresponding to the parameters
in the example looks like this:

| Ut aReal 64 dDVM Resul t (hPar nBl ock, "Result");
| Utalnt32 | DVM Functi on(hPar nBl ock, "Function");

Given these declarations, you can use dDVM Resul t like adouble and
| DVM _Funct i on likealong (32-bit integer).
Some of the C++ classes directly correspond to standard C data types, as
shown below.

This C++class ... Corresponds to this C data type

IUtalnt32 int or long (whichever is 32 bits)

IUtalnt32Array int[] or long[] (whichever is 32 hits)

IUtaReal64 double

IUtaReal64Array double(]

IUtaString const char*

Note The Real 64Expr parameter type is treated as a Real 64 type.

119

Working With Actions
Creating Actions in C

If the HP TestExec SL parameter type does not readily correspond to a C
datatype, the argument passed to the user routine behaves as if it is of type
HUTADATA. To access the value of an argument passed as this type, your
action routine must use special access routines defined for that particular
datatype.

The following list shows the correspondence between C++ classes,
parameter typesin HP TestExec SL, and HUTA data types.

C++ Class Parameter Tvpe HUTA Data Type
IUtaComplex Complex HUTACOMPLEX
[Utalnst Inst HUTAINST

IUtaPath Path HUTAPATH

IUtaPoint Point HUTAPOINT
IUtaPointArray PointArray HUTAPOINTARRAY
IUtaRange Range HUTARANGE
IUtaRangeArray RangeArray HUTARANGEARRAY
IUtaStringArray StringArray HUTASTRINGARRAY
IUtawaveform Waveform HUTAWAVEFORM

A set of API functions let you access these types of parameters. Also,
additional functions are provided for directly accessing the handles to the
various data types. For more information about these data types, the API
calls used with them, and how to read the syntax of the data types and APIs,
see the Reference book.

Exception Handling in C Actions

Note For an overview of exceptions, see “About Exceptions” indaging
Sarted book.

Various functions in the Exception Handling API let you use C actions to
raise and examine exceptions that occur during testing. Because it lets you

120

Working With Actions
Creating Actions in C

handle exceptions at alow level, handling exceptions in actions can be more
precise than simply letting your testplan branch to an aternate sequence of
testsin the Exception Sequence.

The remainder of this topic shows some of the most useful concepts and
functions in the Exception Handling API. You can find afull list of these
API functions and their descriptionsin Chapter 4 of the Reference book.

At thesimplest level, the Ut aExcRai seUser Er r or () function letsyou
raise a user-defined exception in response to some anticipated error
condition. The example below shows how this works.

/'l Exanpl e causes the following to display in Report w ndow when
/'l encountered while testplan is executing:
/1 Condition raised a user-defined exception! (Severity: 5)

char chMessage [60];

I ong | Severity;

... (do sonet hi ng)

if (sonme condition == sone value) /| raise an exception?

{

strcpy (chMessage, "Condition raised a user-defined exception!");
| Severity = 5;

Ut aExcRai seUser Error (chMessage, | Severity);

}

...(testing is aborted because exception occurred)

As noted in the example’'s comments, unless they are specifically received
and handled otherwise, user-defined exceptions simply send a message to
the Report window and abort testing.

However, much of the power in having user-defined exceptions lies in being
able to process them and act appropriately instead of simply aborting testing
the first time an exception occurs. The next example uses several of the
Exception Handling API functions in a more meaningful way.

121

Working With Actions
Creating Actions in C

/1 Exanpl e can raise user-defined exceptions while action is doing

/'l tasks. Each exception has a severity level associated with it. Near
/1l the end of the action, a routine checks to see if exceptions

/1 occurred and receives themif they did. If the severity of an

/'l exception exceeds a threshold, a value of -1 is witten to a

I/l parameter named "parml1" in the action’s parameter block. If "parm1"

/l'is areference to a symbol in a symbol table, actions in other tests

/l can access the symbol table to see if this action raised one or more

Il "serious" exceptions.

HUTAEXC hUtaException;

long ISeverity, INumExceptions, ICounter;

char chMessage[40];

...(do something)

/ action routine contains one or more routines to see if an
/I exception condition exists

if (sonme condition == sone val ue) /l raise an exception?

{

strcpy (chMessage, "Condition raised an exception!");
ISeverity = 10; // assign severity level to this exception
Ut aExcRai seUser Er r or (chMessage, ISeverity); // raise exception

}

...(testing continues)

...(near end of testing)
if (Ut aBExcRegl sError () // if exception(s) exist

{
INumExceptions = Ut aExcRegGet Er r or Count (); // get # of exceptions
/Il receive all exceptions & get handle to first in list
hUtaException = Ut aExcRegRecei veErr or ();
for (ICounter = 1; ICounter <= INumExceptions; ICounter++)
{
if (Ut aExcGet Severity(hUtaException) > 5) // test severity
UtaPbSetInt32(hParmBlock, "parm1”, -1); // write to parm.
if (ICounter < INumExceptions)
/I get handle to next exception
hUtaException = Ut aExcGet Next Er r or (hUtaException);
¥
¥

122

Working With Actions
Creating Actions in C

In asimilar fashion, you can raise, receive, and handle user-defined
exceptions specific to your testing environment. You have the choice of
handling exceptions immediately or, as in the example, postponing their
handling until later.

The API functions used the preceding example are listed below.

This function... Does this...

UtaExcRaiseUserError() Raises a user-defined exception and lets
you specify an error message and severity
indicator to be associated with the
exception.

UtaExcReglsError() Tests for the presence of one or more
exceptions that have been raised but not
yet received.

UtaExcRegGetErrorCount() Returns the number of exceptions that have
been raised and not yet received.

UtaExcRegReceiveError() Returns a handle to the first in a list of
exceptions.
UtaExcGetSeverity() Returns the severity level that was set when

the exception occurred.

UtaExcGetNextError() Given the handle to an exception, returns
the handle to the next exception if more
than one exception has been raised.

HP TestExec SL also has predefined exceptions for such conditions as math
errors, out-of-range values, and array dimensioning errors. These are listed
in the system file “uta.h”.

Using C Actionsto Control Switching Paths

Overview

If you do not use hardware handler software to communicate with switching
modules, you must control switching directly from actions via your chosen
I/O strategy. This requires you to write custom routines that tend to be
complex and may not be reusable.

123

Working With Actions
Creating Actions in C

But if you are using a hardware handler, there are two better waysto control
switching during atest:

* You can use the Test Executive’s Switching Path Editor to graphically
control switching paths at the beginning and end of a test. This is the
easiest method.

* You can use API functions to control switching paths from an action,
which lets you modify switching paths during a test. Because it
requires you to write code, this method is more difficult to use than
the Switching Path Editor. However, it is more versatile because it lets
you explicitly control switching as needed.

When action routines contain code that controls switching paths, they tend to
be specific to a particular implementation of switching hardware. This can
make them more specialized and less reusable than action routines that do
not control switching. In general, you can improve the reusability of actions
by specifying switching at the test level instead of inside action routines.

Using API Functionsto Control Switching Paths

The C Action Development API contains the following functions you can
use to control switching from a C action routine.

API Function Purpose

UtaPathConnect() Establishes a switching path

UtaPathDisconnect() Resets all relays in a switching path

UtaPathWait() Waits for the switching relays to close before
returning

The declaration of thet aPat hConnect () function is:
voi d Ut aPat hConnect (HUTAPATH hPat h, BOOL bWit =TRUE);

Ut aPat hConnect () establishes the switching path specifiechbyt h,

which is most likely passed into the action routine as one of its parameters.
ThebWi t parameter is optional; it defaults to TRUE, but if set to FALSE
the function will return without waiting for relays to close.

124

Working With Actions
Creating Actions in C

An example using Ut aPat hConnect () might look likethis:
Ut aPat hConnect (hPat h);
The syntax of the Ut aPat hDi sconnect () functionis:

voi d Ut aPat hDi sconnect (

HUTAPATH hPat h,

BOOL bWwait = TRUE

)
Ut aPat hDi sconnect () resetsall the relays along the path. Reset is
defined by the default positions of the switching elements. Thus, the path is
opened. The bWAi t parameter is optional; it defaults to TRUE, but if set to
FAL SE the function will return without waiting for relays to open.

An example using Ut aPat hDi sconnect () might look like this:
Ut aPat hDi sconnect (hPat h);

The Ut aPat hWai t () function provides away to tell the system to wait
for a specific path connection. Its syntax is:

voi d Ut aPat hWait (HUTAPATH hPat h);
An example that includes Ut aPat hWai t () might look like this:

Ut aPat hConnect (hPath, FALSE);
...(do sonething el se while waiting)
/1l Ensures that path will be closed.
Ut aPat hWait (hPat h);

Notice that unlike using Ut aPat hConnect () by itself withbWAi t setto
TRUE, having aUt aPat hWai t () function follow a

Ut aPat hConnect () whosevaluefor bWai t isFALSE letsyou do other
tasks while waiting for the specified switching path, hPat h, to be
established by Ut aPat hConnect () .

125

Working With Actions
Creating Actions in C

HP TestExec SL also providesa Ut aPbGet Pat h() function you can use
to retrieve switching path data from parameter blocks and subsequently use
with the functions described above. An example of its use looks like this:

HUTAPATH hPat h;
/1l Get the parameter specifying the path
hPath = U aPbGet Pat h (hParamet er Bl ock, "DcvPat hLow");

/1 Cose the path
Ut aPat hConnect (hPath);

/| Take a neasurenent
/1
/1
/1

/1 Open the Path
Ut aPat hDi sconnect (hPath);

For more information, see “Functions for Manipulating Switching Paths
from Actions” in Chapter 2 of thReference book.

Using Satesto Store Switching Data

Using thelt aPat hConnect () andUt aPat hDi sconnect ()

functions to control switching paths is convenient in simple cases, but
requires more work in more complex situations. For example, suppose you
needed to set up new paths temporarily and restore them later. This could
cause you to write quite a few lines of code to track the changing states of
switching elements in switching paths.

To remedy this, the C Action Development API provides various
“UtaState...” functions used to create and manipulate “switching states” that
contain one or more switching paths. You can find a complete list of them
and their syntaxes under “Functions for Manipulating Switching Paths from
Actions” in Chapter 2 of th&eference book.

Consider the following example, which temporarily stores the state of the
switching hardware, adds to the state of the switching hardware a path
previously stored as “NewPath” in a parameter block, and subsequently
restores the switching hardware to its original state.

126

Working With Actions
Creating Actions in C

HUTASTATE hOriginal State; // variable for handle to switching state
HUTAPATH hPath; // variable for handle to switching path

hOriginal State = UtaStateCreate(); // create enpty switching state
hPat h = U aPbGet Pat h(hPar anet er Bl ock, "NewPath"); // get path data
UtaStateMergePathState(hOriginalState, hPath); // define state’s scope
UtaStateUpdate(hOriginalState); // store current state of hardware
UtaPathConnect(hPath); // set hardware to path retrieved from NewPath

// Do tasks while new path is in effect

...(make a measurement, etc.)

I restore the hardware to its initial, stored state
UtaStateRecall(hOriginalState);
UtaStateRelease(hOriginalState); // free memory used by state object

How does the example work? Suppose we begin by using
Ut aSt at eCr eat e() to create a switching state:

hOriginalState = UtaStateCreate();

In theory, an empty (uninitialized) switching state potentially could store
switching information for an entire test system. However, in redlity itis
guicker and more convenient to work with a subset of all possible switching
hardware. A switching path defines just such a subset, so the next line gets
the data associated with an existing switching path stored in a parameter in a
parameter block, likethis:

hPath = UtaPbGetPath(hParameterBlock, "NewPath");

Now we must merge the switching path data with the empty switching state
to define the scope of the switching state; i.e., which specific hardware out
of all possible hardware it describes. To do this, we use

Ut aSt at eMer gePat hSt at e() , as shown below.

UtaStateMergePathState(hOriginalState, hPath);
Now the range of the switching state is restricted to the path specified by the

data retrieved from the parameter named “NewPath”. Note that this data
may not describe the exact state of the switching elements that we need; i.e.,
relays or other programmable connections defined in the switching path may
be in the wrong positions for our intended task. However, that causes no
problem becausmerging a path into a state changes nothing in the actual
hardware. Instead, the purpose of merging is simply to define the scope or
extent of the switching state.

127

Working With Actions
Creating Actions in C

Next we want to store the current status of the hardware—i.e., the positions
of the switching elements in the path of interest—before changing it. Storing
the hardware’s status in a switching state lets us store and recall it as a single
entity, instead of laboriously manipulating it via individual

Ut aPat hConnect () andUt aPat hDi sconnect () statements. We use

Ut aSt at eUpdat e() to update the state from the current settings of the
hardware:

Ut aSt at eUpdat e(hOri gi nal St ate);

Having safely stored the state of the switching hardware, we can use the
“NewPath” data to change it, like this:

Ut aPat hConnect (hPat h) ;

After doing tasks that require the new switching path, we can restore the
original path in a single statement withaSt at eRecal | () :

Ut aSt at eRecal | (hOrigi nal State);

Now that we have returned the hardware to its original state, we are finished
using the state object created at the beginning of the example. To free the
memory it is using, we do this:

Ut aSt at eRel ease(hOri gi nal St ate);

For more information about switching states, see “Data Types Associated
with Switching” in Chapter 1 of thReference book.

128

Working With Actions
Creating Actions in C

Adding Revision Control Information for Actions

If desired, each DLL inwhich action code resides can include a string of text
for auditing purposes, such asrevision control information. As shown below,
the text shows up when listing the actionsin atestplan.

Listing topic: ACTICNS
Testplan f£ile: C:hyProgram Files'HP TestExec SLhbin'MyTestplan.tpa
Produced at: 3/24/1997 1Z2:03:56

Aotion nawe: Mybotion
Definition File Fewvision Info...
Version: 1.1 Last Updated: 3/24/1997 11:53:50
Revision Comnents:
< No Comnent >

DLL Fewision Info...
Fewvision 1.1 of the Mviction DLL

The method for doing thisis shown in the example of action code below.
You must add a macro named UTA_DECLARE_DLL_REVISION_TEXT
and specify the auditing text in it. Be sure to place the macro inside the scope
of the declaration for ext ern " C' when using a C++ compiler.

/1l File "MyAction. cpp"
#i ncl ude "stdafx. h"

#i ncl ude <uta. h>

#i ncl ude "MyActi on. h"

extern "C" { // Prevent C++ conpiler fromusing name mangling

actions in this DLL share the follow ng auditing information
UTA DECLARE DLL_REVI SI ON_TEXT (" Your auditing text goes here...");

voi d UTADLL MyActionRouti ne (HUTAPB hPar nBl ock)

...(code that inplenents the action routine)

129

Working With Actions
Creating Actions in C

...(additional action routines inplenented in this DLL)

} // end extern "C'

Note You can add one string of auditing text per DLL. That string of text appears
in thelisting for al actions implemented in the DLL. If you use multiple
source files for your DLL, be sure to specify the auditing text in only one of
them or you will generate an error.

Example of Creatinga C ActioninaNew DLL

Note The topicsin this section describe how to use the devel opment environment
provided with Micrasoft Visual C++ 5.0. If you are using another C/C++
devel opment environment, the details will vary but the concepts will be
similar.

This section, which assumes you are somewhat familiar with the mechanics
of using Visual C++, describes how to create a new actioninanew DLL.
The emphasisis on the process of creating an action in C, not on what
belongs inside an action.

Defining the Action

Follow the general procedure described earlier in “Defining an Action” and
keep the following in mind when using the Action Definition Editor to
define actions written in C:

e Choose “DLL Style” as the action style.

* The executable code for the action must reside in a DLL. Enter the name
of that DLL as the library name for the action.

« You can define execute, setup, or setup/cleanup routines for C actions.
* For the Routine name, use the name of the C routine.

» Be sure to use parameter types that are appropriate for the C language.

130

Working With Actions
Creating Actions in C

Specifying the Development Environment Options

You set the Visual C++ development environment options once, and then
they become the defaults for any new projects that you create.

Setting the Path for Libraries

1. Choose Tools | Optionsin the Visual C++ menu bar.

2. Inthe Options box, choose the Directories tab and specify a path for
library files that includes the “lib” directory beneath the home directory
in which HP TestExec SL is installed on your system. An example is
shown below.

E ditor | Tabs | Debug | Compatibility | Build | Directories | { EE
Flatform: Show directories far:
[win32 | [Librany files a
Directories: L O 4
C:\Program FileshDevStudio'WCALIB -
C:MProgram FileshDevSudio W CAMFEA b
IE:HF'ngram FileshHF TestExec SLME | I
Note Depending upon where you installed Visual C++ and HP TestExec SL on

your system, your paths may vary from those shown.

131

Working With Actions
Creating Actions in C

Setting the Path for Include Files

1. Inthe Options box, specify a path for include files that includes the
“include” directory beneath the home directory in which HP TestExec SL
is installed on your system. An example is shown below.

Editor | Tabs I Debug | Compahibility | Build | Directonies | € EE

Flatfarm: Show directones far:

[win32 | |incude files -]

Directonies: i G S 4
C:AProgram FilestDevStudio'WCHMCLUDE -

C:AProgram FileshD evStudioWCAMF Chinclude
C:\Program Files\D evStudiotChWAT Lhinclude
IE: “Program Filez'\HP TegtExec SLunclude | I

2. Click the OK button to save the path you specified.

Note Depending upon where you installed Visual C++ and HP TestExec SL on
your system, your paths may vary from those shown.

Creatinga New DLL Project

1. Choose File | New in the Visual C++ menu bar.

132

Working With Actions
Creating Actions in C

2. Choose the Projects tab and specify Win32 Dynamic-Link Library asthe
type of project, as shown below.

New ﬂﬂ

Files | Projects | Wiork zpaces | Other Documents |

.25 ATL COM Sppwizard Project name:
1% Custom Appiwizard IMy.-’-‘«clion

Logation:
IVSTUDIEI\MyF'lDiects'\MyActinn J

(¥ Create new workspace
O Add to cument warkspace
[[] Dependency of:

k3 in Static Library I LI
Platfarms:
[Mlwinzz
3. Type a Name for your project.
4, Specify the Location for your project.
Note The action definition created with HP TestExec SL's Action Definition

Editor needs to reference this location. If you later recompile the DLL in
release mode and move it elsewhere, you need to specify its new location as
described in “Specifying the Search Path for Libraries” in Chapter 5.

5. Choose the OK button.

Specifying the Project Settings

You set the project settings once for each new project you create.
1. Choose Project | Settings in the Visual C++ menu bar.

2. If needed, choose the General tab to make its options visible.

133

Working With Actions
Creating Actions in C

3. Inthe Project Settings box, specify the Microsoft Foundation Classes
(MFC) option.

Specify this... If you wish to do this...
Not Using MFC Create a DLL that is small and fast but

does not support MFC's features.? This
option is most useful for reducing
overhead when you have many individual
action routines in many DLLs.

Use MFC in a Static Use MFC's features but have a large DLL.

Library? Because the size of your action code
typically will be far smaller than the DLL's
overhead, this option is most useful when
you have only a few DLLs and each of
them contains multiple, related action
routines.

a. Generally speaking, MFC’s most useful feature insofar as actions are
concerned is that it lets you use visual resources, such as dialog boxes, in
actions. In many cases these graphical features are not needed to
manipulate data or control instruments, and you do not need to use MFC.

b. You should not use the MFC in a Shared DIl option because HP TestExec
SL already does this, and having different versions of MFC may cause
conflicts.

An example of specifying “Use MFC in a Static Library” for the
Microsoft Foundation Classes option is shown below.

Project Settings E

Seftings For: |'win32 Debug LI General | Debug | CAC++ | Link. | Hesourc{ EE

IEE b pdichion
el Reset |

Microzoft Foundation Classes:

4. Choose the C/C++ tab to make its options visible.

5. Choose Precompiled Headers from the Category list.

134

Working With Actions
Creating Actions in C

6. Be sure “Automatic use of precompiled headers” is enabled.
7. Specify “stdafx.h” for the “Through header” option.

When you specify precompiled headers, the compiler will compile once
all the header files through the one specified in the dialog box, and after
that it will compile only your code. This speeds subsequent compilations.
An example of using these options is shown below.

Project Settings n H
Lirk, | Hesnurca EE
Reset |

Settings For: |\win32 Debug LI General I Debug | C/C++
I'EE |'-'1_'.-'."—"‘.|::ti|:|r'|

L - Crniled Headers

€ Mot uzsing precompiled headers
& Automatic use of precompiled headers

Thraugh header: Isldafk.h

8. Choose the Link tab to make its options visible.

9. Specify “utacore.lib” for the “Object/Library modules” option, as shown
below.

Project Settings nm

LI General | Debug | C/AC++ | Link | Hesourci: EE

Category: IGeneraI ;I Reset |

Cutput file name:
IDebuga’MyAction.dll

ObjectAibrary modules:

Iutacore.lib

Linking against “utacore.lib” lets the compiler resolve all the external
references to HP TestCore definitions, functions, and classes used in your
action code. Because you already specified the default library path
earlier, you do not need to enter the full path here.

10.Choose the OK button to save the project settings and close the Project
Settings box.

135

Working With Actions
Creating Actions in C

Writing Source Filesfor the Action Code

There are a couple of ways to write action code. You may prefer to write the
code from scratch, or you can copy the code for an existing action and use it
as atemplate for a new action. Shown below are the contents of the sample
files needed to create a simple action from scratch. Put the filesin the project
directory for your DLL.

Contents of the Header File:

/1 This file is MyAction.h
extern "C' void UTAAPI MyExecut eFuncti on(HUTAPB hPar anet er Bl ock) ;

Contents of the Implementation File:

/1 This file is MyAction. cpp

#i ncl ude "stdafx.h"

#include <uta.h> // APl for HP Test Core services
#i ncl ude "MyActi on. h"

CW nApp theApp; // Comment out or renpve this line if not using MFC
extern "C'{ // Prevent C++ conpiler from using nane nangling
voi d UTADLL MyExecut eFuncti on(HUTAPB hPar anet er Bl ock)

{

/1l Action code to do a task goes here. ..
return;

}
}

Contents of the System-Level Include File:

/1 This file is stdafx.h

#defi ne VC_EXTRALEAN // Exclude rarely used stuff

#i ncl ude <afxwin. h> // M-C core and standard components
#i ncl ude <afxext.h> // M-C extensions

Although this code is used to create a DLL that contains a single execute
action, you could write multiple actions of various types and put them al in
asingle DLL. Also, your actions typically will use parameters passed in a
parameter block.

136

Working With Actions
Creating Actions in C

Adding Source Filesto the Project

Do the following for each of the source files above:

1. ChooseFile | New in the Visual C++ menu bar.

2. On the Files tab in the New box, specify the file's type, ramred
location, and choose the OK button to add it to your project.

An example of creating a header file is shown below.

Mew BE

Files | Projects | Wiorkspaces | Other Documents |

_@f-‘«ctive Server Page ¥ Add to project:

Binary File IMyAction j
Bitmap File

C++ Header File

| C++ Source File File hame:
%t Cursor File IMyAction.h

- Jlcon File Location:

1w Macio File [C\PROGRAM FILES\DEVSTU ||,.
Resource Script

3. Type the file’s contents in the editor window that appears.

Updating Dependencies

1. Choose Build | Update All Dependencies in the Visual C++ menu bar.

2. When prompted whether to update the debug version, release version, or

both for your project, select the Debug version, as shown below, and
choose the OK button.

Update All Dependencies [7] x|

Project configurations:

(] I
¥ Mydction - Win32 Debug . Cancel |

1. Use a “.cpp” extension for your implementation file.

137

Working With Actions
Creating Actions in C

Note The debug version of aprogram contains additional code that makesit larger
and slower to execute than arelease version. Thus, you probably will want
to recompile afinal, release version of the DLL after you have debugged it.

Verifying the Project’'s Contents

e Choose the FileView pane in the Visual C++ workspace window to verify
the contents of your project, as shown below.

2l x]

Wu:urkspau:e ‘Mudction’ 1 project(s] | -
=B MypAction files
EI a Source Files

....... [#] Mydction.cpp
EI a Header Files

-[E] Mpsction h

-[Z] stdafx.h
| »

B Clazghi. | . FI|E"-.-"IEWI B |r'||:l:ll"."'IEWI

Compiling the Proj ect

» Choose Build | Build project name> in the Visual C++ menu bar to
build the DLL.

Copyingthe DLL to Its Destination Directory

Overview

Each time you create a DLL containing action routines, you need to copy the
DLL to the destination directory where it will be used. You can greatly
simplify and reduce potential errors in the copying process by creating one
or more custom tools in Visual C++.

Note Any time you move a DLL, you potentially need to need to specify its new
location as described in “Specifying the Search Path for Libraries” in
Chapter 5. Also, if you are running a testplan, you need to close and reopen
it before new or moved files will take effect.

138

Working With Actions
Creating Actions in C

Creating a Custom Tool to Copy the DLL

[EEN

. Choose Tools | Customize in Visual C++'s menu bar.
2. In the Customize box, choose the Tools tab.
3. Choose the New button that appears above the “Menu contents” list.

4. In the blank field that just appeared in the “Menu contents” list, specify a
descriptive label for what this tool does.

5. Typexcopy as the Command.

6. Click the arrow to the right of the Arguments field.

7. Choose Target Path from the list that appeatrs.

8. Enter quotes around tB¢ Tar get Pat h) entry in the Arguments field.

9. To the right of $(Tar get Pat h) " in the list of Arguments, type the
name of the destination directory to which your DLL should be copied.

Tip: If your pathname includes spaces, be sure to enclose it in quotes.
10.Enable the check box labeled Redirect to Output Window.

11.Choose the Close button.

139

Working With Actions
Creating Actions in C

Shown below is an example of specifying the options for this custom tool.

S ||

Commands | Toolbarz | Tools | K.eyboard | Add-ing and Macro Files |

|Menu caontents: L i
' Copy DLL to HP Te

Shpy++

MFC &Tracer

Refaizter Cantral LI
Cornmand: I:-:c:u:up_l.J.EKE J
Arguments: I"$[T argetPath]'" "C:\Program FileshHP TestExec SLbin" j

Iritial directary: I j

W Use Output Window [Prompt for argumentz [Close window on exiling

Cloge

Using the Custom Tool to Copy the DLL

1. Choose Tools in Visual C++'s Tools menu bar.
2. Choose the custom tool from the menu of tools.

When the tool runs, its results appear in Visual C++'s output window.

140

Working With Actions
Creating Actions in C

Example of Defining a C Action

Theillustration bel ow shows how information you specify in the Action
Definition Editor relates to the associated code in a C action routine.

Action Mame: IDemuﬂ.ctind Fout
outines

.-“-‘-.utbl:nr:lHP ™ Setup/Cleanup % Execute

Library Mame: [Myéction. di Setup: |

Execute: I.&.ddT wilhteqersE secute

/1l File "MyAction.cpp" (Source for MyAction.dll)

#i ncl ude "stdafx. h"
#i ncl ude <uta. h>
#i ncl ude "MyActi on. h"

extern "C" {

voi d UTADLL AddTwol nt eger sExecut e (HUTAPB hPar nBl ock)
{
| Utal nt 32 Addendl (hParnBl ock, "Addendl");
| Ut al nt 32 Addend2 (hPar nBl ock, "Addend2");
| Utalnt32 Sum (hParnBl ock, "Sunt');
Sum = Addendl + Addend2;
return;

}

Action Parameters

The current result iz - /

Mame |'1.I’alue Type |Attrihutes |DE
Addend] < 8 /" Int32

Addend? 0 Int32

Sum 0 Int32 QUTPUT

141

Working With Actions
Creating Actions in C

Adding a C Action to an Existing DL L

Follow this general procedure to add anew C action to an existing DLL:

1.

extern "C" { //

Use HP TestExec SL's Action Definition Editor to create a definition for
the new action. When you specify the library, use the name of the
existing “.dll” file to which you want to add the new action.

If the existing DLL was created using a different compiler or different
compiler options, verify that your C/C++ development environment’s
options are similar to those described earlier in “Specifying the C/C++
Development Environment Options.”

Use your development environment to open the project workspace or
make (“.mak”) file—i.e., whichever method your C/C++ development
environment uses to manage projects—for the existing DLL.

. Add the code for the new action to the implementation (“.cpp”) file.

The example below shows the code for an implementation file used to
create a DLL that contains two action routines. Naotice that the
declaration foext ern " C' encompasses both functions, and that the
implementation file uses the UTADLL macro in the functions.

/1l File is "MAction.cpp"
#i ncl ude "stdafx. h"

#i ncl ude <uta. h>

#i ncl ude "MyAction. h"

Prevent C++ nane nangling

/1 Function that adds two integers
voi d UTADLL AddTwol nt eger sExecut e (HUTAPB hPar nBl ock)

| Utal nt 32 Addendl (hParnBl ock, "Addendl");
| Ut al nt 32 Addend2 (hPar nBl ock, "Addend2");
| Utalnt32 Sum (hParnBl ock, "Suni);

Sum = Addendl + Addend2;

142

Working With Actions
Creating Actions in C

/1l Function that adds two reals
voi d UTADLL AddTwoReal sExecut e (HUTAPB hPar nBl ock)

{

| Ut aReal 64 Addendl (hParnBl ock, "Addendl");
| Ut aReal 64 Addend2 (hParnBl ock, "Addend2");
| Ut aReal 64 Sum (hPar Bl ock, "Sunt');

Sum = Addendl + Addend2?;

return;

}

} // end extern

" e

5. Add the declaration for the new action to the header (“.h") file.

The example below shows the code for a header file that contains the
prototypes for two action routines. Notice that each prototype includes a
declaration foext ern " C', and that the header file uses the UTAAPI
macro in the prototypes.

[IFile is "MyAction.h"
extern "C' void UTAAPI AddTwol nt eger sExecut e(HUTAPB hPar nBl ock) ;
extern "C' void UTAAPI AddTwoReal sExecut e(HUTAPB hPar nBl ock) ;

ordi nal hint
1 0
2 1
3 2
4 3
Note

6. Rebuild the DLL.

Tip: You can use the “dumpbin” utility provided with Visual C++ to
browse the contents of an existing DLL. The example below shows an
excerpt from a “dumpbin /exports” listing that shows the exported names
of the functions in a DLL.

nane

_Di spl ayExceptions@ (00001680)
_Echol nt32@ (00001040)
_EchoReal 64@ (000010A0)
_Randontai | Real 64@ (000012B0)

Any time you move a DLL, you potentially need to need to specify its new
location as described in “Specifying the Search Path for Libraries” in
Chapter 5. Also, if you are running a testplan, you need to close and reopen
it before new or moved files will take effect.

143

Note

Note

Working With Actions
Creating Actions in C

Debugging C Actions

You can debug C actions with the debugging tools provided by the C/C++
environment in which you program. The general sequence of events when
using your C/C++ environment for debugging is:

In C/C++ Environment
1. Set one or more breakpoints in
action code being debugged.

2. Specify HP TestExec SL as
program to execute during a
debug session.

3. Run the debugger.

4. Debugger runs HP TestExec SL
|

Control passes to HP TestExec SL

Control passes to C/C++

v

8. Examine or modify variables in
action code being debugged

9. Continue or clear breakpoint,
etc.

In HP TestExec SL
5. Log in.
6. Load & run a testplan that

uses the action code to be
debugged.

7. Paused at breakpoint in action
code.

Debugging may require that you build anew DLL specifically for debug

purposes.

Any time you move aDLL, you potentially need to need to specify its new
location as described in “Specifying the Search Path for Libraries” in

Chapter 5. Also, if you are running a testplan, you need to close and reopen

it before new or moved files will take effect.

144

Note

Working With Actions
Creating Actions in C

If your debug process causes you to modify and recompile aDLL that
contains action code, you cannot simply copy the modified DLL over the
existing DLL while HP TestExec SL has atestplan loaded that uses that
DLL. Instead, you must close the testplan, copy the modified DLL over the
existing DLL, and then reload the testplan.

Follow this general procedure to debug a C action:
1. Runyour C/C++ development environment.

2. Specify ‘<HP TestExec SL home>\bin\tstexcsl.exe” as the program to
support debug.

An example of doing this in Visual C++ 5.0 is shown below.

Project Settings

win3z Debug ;I Debug | C/C++ | Link | Resources I OLE

Settings Far:

Category: IEeneraI j

Executable for debug session:
IE:\F‘rogram Files\HP TestExec SLibin'tstexcsl exe

3. Set the desired breakpoints in the implementation file (“.cpp”) for the
action.

An example of doing this in Visual C++ 5.0 is shown below.

Thi=z file i= HvAction.cpp by
#include "stdafzx h" |MSaUHemnveBmdwomuFm|
#include <uta h: - API for HP TestCore =services

#include "MHyAiction. h"

CWinApp thedpp:
extern "C"'{
® raid UTADLL MyExecuteFunction(HUTAFE hFarameterElock)
1
AfzMessageBox("Thiz messzage called from the action DLL". HE_OQK):
return;

i

4. Choose whichever button or command runs your debugger.

145

Working With Actions
Creating Actions in C
In Visual C++ 5.0, choose Build | Start Debug | Go in the menu bar.

5. After HP TestExec SL has loaded, load or create atestplan that invokes
the action being debugged.

6. Run thetestplan.

7. When the breakpoint in your action code is reached and control is
returned to the debugger, use the debugger’s features to debug the action.

Another useful debugging technique is to create action code that pops up a
message box or dialog box and stops test execution so you can use external
instruments to diagnose problems.

146

Working With Actions
Creating Actions in HP VEE

Creating Actionsin HP VEE

HP TestExec SL lets you write actionsin HP V EE and take advantage of
HP VEE's features, such as debugging and instrument control. Executable
HP VEE actions are HP VEE user functions stored in an HP VEE library.

Creating an action in HP VEE is a two-step process. You can do the
following steps in any order:

e Use HP VEE to create the functions used by the action, and save the
resulting user functions in the HP VEE library.

+ Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

See also: “HP VEE Considerations” in Chapter 2 of tBetting Sarted
book.

Restrictions on Parameter Usagein HP VEE

HP VEE only lets you pass certain types of parameters. Shown below is a
list of those types and how they correspond to one another in both
environments.

In HP TestExec SL In HP VEE
Data Type: Data Type: Shape:
Int32 Int32 Scalar
Int32Array Int32 Array
Real64 Real Scalar
Real64Array Real Array
String Text Scalar
StringArray Text Array

147

Working With Actions
Creating Actions in HP VEE

Note As shown below, you must explicitly specify adatatype for pinsin
UserFunctions; i.e., do not use the Any type.

Input Terminal Information

Mame: | Inputi Required Type:
Mode: Regquired Shape:

PComplex
Container Infarmation | cormples

Waveform

Mo data oninput pin Spectrum

| oK ||Cance|| Coord
Text

od = Do not
2y) €— use this
o option

Defining an HP VEE Action

Be aware of the following when using the Action Definition Editor to create
HP VEE action definitions:

* You must choose “HP VEE” as the action style.

« When defining the action library name, enter the name of the HP VEE
library—e.g., “mylib.vee"—that contains the user function that does the
action.

+ For the Routine name, enter the name of the HP VEE function; i.e., the
user function in the specified HP VEE library.

Example of an HP VEE Action

This section provides a simple example of how parameters are passed
between HP TestExec SL and action code created using HP VEE. The action
is done by an HP VEE user function that receives two parameters from

HP TestExec SL, generates a random number based on those parameters,
and then passes the result back to HP TestExec SL.

148

Working With Actions
Creating Actions in HP VEE

All that is required to pass parameters between HP TestExec SL and
HP VEE isto:

« Make the names of parameters in the HP VEE user function match the
names of corresponding parameters specified for the action in the Action
Definition Editor.

+ Make the name of the HP VEE function match the name of the action
code specified in the Action Definition Editor.

Suppose you have used the Action Definition Editor to provide the
following action definition information and stored it in a file called
“random.umd” located in an action library where you chose to store HP VEE
action definitions.

Action name random

Description Generates a random number.

Library name c:\project\vee\mylib.vee

Routine name my_random

Parameters (All parameters are of type Real.)
low The low range value for the random number generator.
high The high range value for the random number generator.
result The resulting value from the HP VEE random number

generator (designated as an OUTPUT in the Action
Definition Editor).

149

Working With Actions
Creating Actions in HP VEE

The corresponding HP VEE user object used to create the user function for
this definition might look like this:

—| my_random |]
i | =| randum(TDw,high) | 4]
ot [randormilow, high) Result +— result

_j—l high
1 hidh =

Debugging HP VEE Actions

In a production environment, you probably want HP TestExec SL to

schedule HP VEE in run-only mode. However, this means that none of

HP VEE’'s command menus are present, which prevents you from setting
breakpoints, editing files, starting or stopping programs, or controlling
HP VEE in any way.

The Action Definition Editor provides an option that helps you debug

HP VEE actions. If you click to select the Debug check box in the Action
Definition window, HP VEE will be run in debug mode. After you have
debugged your actions, unselect the box to return to run-only mode.

Tip: While debugging HP VEE actions, you can edit UserFunctions by
running another copy of HP VEE and making edits there. After editing a
UserFunction, be sure to save the changes to disk with File | Save in

HP VEE. Then close and reopen the current testplan in HP TestExec SL to
force it to load the changes.

Error Handlingin HP VEE

If you select the Debug check box in the Action Definition Editor’'s Action
Definition window, errors in HP VEE will not cause exceptions. Instead, the
normal HP VEE processing will handle the error. An error message dialog
box will appear, giving the complete text of the error message and
highlighting in red the HP VEE object containing the error.

150

Working With Actions
Creating Actions in HP VEE

Controlling the Geometry of HP VEE Windows

If desired, you can specify the geometry for the window in which HP VEE
actions appear. Use atext editor, such as WordPad in its text mode, to add
two lines in the following format to the “tstexcsl.ini” file in HP TestExec
SL's home directory (which by default is “\Program Files\HP TestExec

sL).t

[VEE Acti ons]

Ceonet r y=W dt hxHei ght +XOf f set +YOf f set
All dimensions are measured in pixels.

The example below specifies a window that is 800 pixels wide, 500 pixels
high, and originates in the upper-left corner of the screen.

[VEE Acti ons]
Ceonet r y=800x500+0+0

Executing HP VEE Actions on a Remote System

If desired, you can execute HP VEE actions on a host system other than the
one on which you are running HP TestExec SL. Use a text editor, such as
WordPad in its text mode, to add two lines in the following format to the
“tstexcsl.ini” file in HP TestExec SL's home directory (which by default is

“\Program Files\HP TestExec SL?).

[VEE Acti ons]
Host Nane=Renpt eAct i onHost

whereRemoteActionHost is the domain name or IP address of a remote
system where HP VEE is installed. For example,

[VEE Acti ons]
Host Name=hpl vl f1.1vd. hp. com

or

[VEE Acti ons]
Host Nane=15. 11. 89. 216

1. If the [VEE Actions] section already exists, simply add the missing lineto it.
2. If the [VEE Actions] section already exists, simply add the missing lineto it.

151

Working With Actions
Creating Actions in HP VEE

Note An action executing on a remote system appears in awindow on the remote
system.

152

Working With Actions
Creating Actions in National Instruments LabVIEW

Creating Actionsin National Instruments
LabVIEW

HP TestExec SL lets you write actions in National Instruments LabVIEW

and take advantage of National Instruments LabVIEW's features, such as
debugging and instrument control. Executable code for National Instruments
LabVIEW actions is National Instruments LabVIEW virtual instruments
(VIs) stored in a National Instruments LabVIEW library (“.IIb") file.

Creating an action in National Instruments LabVIEW is a two-step process.
You can do the following steps in any order:

« Use National Instruments LabVIEW to create the VIs used by the action,
and save the resulting routines in the library.

+ Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

153

Working With Actions
Creating Actions in National Instruments LabVIEW

Related Files

HP TestExec SL includes the following National Instruments
LabVIEW-related files:

uta.llb

utaactn.llb

Contains predefined VIs for passing parameters to and from
HP TestExec SL. Located in directory “\<HP TestExec SL
home>\libs”.

We suggest that you place this library in a subdirectory
called “uta.lib” in the National Instruments LabVIEW
installation directory. If you do not want to create a
subdirectory of that name, install the library in another
subdirectory of the National Instruments LabVIEW
installation directory and make sure the directory has a “.lib”
extension.

Contains a VI used to ask National Instruments LabVIEW to
execute specific VlIs for HP TestExec SL. Note that the front
panel of this VI occupies a small amount of space on your
monitor’s screen. Located in directory “\<HP TestExec SL
home>\bin".

Restrictions on Parameter Passing

Be aware of the following restrictions when passing parameters between
HP TestExec SL and National Instruments LabVIEW:

* You can only pass certain types of parameters. Shown below is a list of

those types and how they correspond to one another in both
environments.

In HP TestExec SL In National Instruments LabVIEW

Data Type:
Int32
Int32Array
Real64

Data Type:
Signed 32-bit integer
Array of signed 32-bit integers

Eight-byte double precision number

154

Working With Actions
Creating Actions in National Instruments LabVIEW

Real64Array Array of eight-byte double precision numbers
String C string
StringArray Array of C strings

» You must use a VI to pass parameters between the two environments.

Custom VIs provided by Hewlett-Packard let you make a graphical
connection between parameters in HP TestExec SL and standard Vls
used with National Instruments LabVIEW. Parameters are passed in a
named block or group.

To access an HP TestExec SL parameter, place one of the VIs from
library “uta.llb” in the diagram of the action’s VI. If the library was
installed correctly, you can select Vls in it by choosing Functions | UTA
in National Instruments LabVIEW.

List of Custom VIsProvided with HP TestExec SL

The functionality of VIs that pass parameters is viewed from the perspective
of the National Instruments LabVIEW environment. Thus, the names of VIs
that send a value to HP TestExec SL contain the word “set” and the names of
VIs that retrieve a value from HP TestExec SL contain the word “get.”

The custom Vls provided with HP TestExec SL that support the passing of
parameters are:

UtaPbGetInt32.vi Obtains the value of Int32 parameters.

UtaPbSetInt32.vi Updates Int32 parameters with new values.

UtaPbGetInt32Array.vi Obtains the value of Int32Array parameters.

UtaPbSetInt32Array.vi Updates Int32Array parameters with new
values.

UtaPbGetReal64.vi Obtains the value of Real64 parameters.

UtaPbSetReal64.vi Updates Real64 parameters with new values.

UtaPbGetReal64Array.vi Obtains the value of Real64Array
parameters.

155

Working With Actions
Creating Actions in National Instruments LabVIEW

UtaPbSetReal64Array.vi Updates Real64Array parameters with new

values.
UtaPbGetString.vi Obtains the value of String parameters.
UtaPbSetString.vi Updates String parameters with new values.

UtaPbGetStringArray.vi Obtains the value of StringArray parameters.

UtaPbSetStringArray.vi Updates StringArray parameters with new
values.

An additional VI is provided that lets you use National Instruments
LabVIEW to control a switching path:

UtaPathConnectNodes.vi Connects nodes in a switching path. Useful if
you need to modify a switching path within
an action.

Aswith other VIsused with National Instruments LabVIEW, these custom
Vs have front panels and onscreen help you can browse to learn more about
them. An example of help for Ut aPbGet | nt 32. vi shown below.

=| Help |LII

parameter block [defaulted] —T- T3,
parameter name - 'FE

eror in [no error] ===

parameter value
error out

UtaPbGetint32. v

Given a parameter name, this % returns the 32 bit integer value. The
| parameter block handle i defaulted and is not required. The “erar in”
defaults to "no error'' and iz not reguired.

Defining a National InstrumentsLabVIEW Action

Be aware of the following when using the Action Definition Editor to define
National Instruments LabVIEW actions:

* You must choose “LabVIEW” as the action style.

156

Working With Actions
Creating Actions in National Instruments LabVIEW

« For the Library name, enter the name of the National Instruments
LabVIEW VI library, including its “.IIb” extension.

* For the Routine name, enter the National Instruments LabVIEW VI
name, including its.Vi” extension; i.e., the action VI in the specified
library.

Example of a National InstrumentsLabVIEW Action

Shown below is asimple example of a VI created using National
Instruments LabVIEW with two of the custom Vs provided with
HP TestExec SL.

IInéutH umI OutputM umm
S SO [1|
IDELI'—%'

The example shows how custom Vs are used to pass parameters between
HP TestExec SL and National Instruments LabVIEW. Here, the custom VI
named Ut aPbGet Real 64 gets a parameter from the HP TestExec SL
environment. The output from Ut aPbGet Real 64 isconnected to the
input of the standard National Instruments LabVIEW VI used to take the
square root of anumber. The resulting square root is connected to the custom
Ut aPbSet Real 64 VI, which passes the result back to HP TestExec SL.

Shown below is the information you would use the Action Definition Editor
to specify for this example. Notice how the names of parametersin the
action definition match the names of the parameters of each library V1.

Action name Ivsgrt

Description Takes the square root of a number.

Library name c:\labview\cmlib.lib

Routine name sqrt.vi

157

Working With Actions
Creating Actions in National Instruments LabVIEW

Parameters (All parameters are of type Real64.)

InputNum The number to be passed to National Instruments
LabVIEW whose square root is to be taken.

OutputNum A parameter to hold the square root of the input number
(designated as an OUTPUT in the Action Definition
Editor).

The action definition is stored in a file called “lvsqrt.umd” located in a
standard library for National Instruments LabVIEW action definitions.

Setting I nterface Options for National I nstruments
LabVIEW

When HP TestExec SL executes a National Instruments LabVIEW action,
the front panel of the VI associated with the action is displayed while the VI
executes. This lets a test operator use the panel.

You can control the size and location of this panel. When HP TestExec SL
executes the action, the panel window appears at the location and size you
set when developing the action. If the action does not require any interaction
with the test operator, you can make the panel size very small and place the
panel in an inconspicuous part of the screen. This prevents the operator from
being distracted by the panel.

You can also control which menus and toolbars display with the panel
window, how the panel window looks, and numerous other options. Set
these options by choosing the “Window Options” mode of the “VI Setup”
dialog box in National Instruments LabVIEW.

158

Working With Actions
Creating Actions in HP BASIC for Windows

Note

Creating Actionsin HP BASIC for Windows

HP TestExec SL lets you write actionsin HP BASIC for Windows and take
advantage of your familiarity with that instrument control language.
Executable HP BASIC for Windows actions are SUB programs you write
and add to a program that runs HP BASIC for Windows as a server for

HP TestExec SL. Besides containing SUB programs that implement actions,
the server program loads the graphical 1/0 environment (HP BASIC Plus),

does any desired autostart configuration tasks, and runs the |PC Widget? that
lets HP BASIC for Windows and HP TestExec SL communicate.

Creating an action in HP BASIC for Windows is a multi-step process. You
can do the following stepsin any order.

e Use HP BASIC for Windows to append one or more SUB programs
containing your action code to a copy of the server template in file

“server.prg”. This creates your HP BASIC for Windows server program.

+ Use the Action Definition Editor to define the action so the Test
Executive is aware of its characteristics.

« Use the HP BASIC for Windows “rmb_conf.exe” utility to “register”
your server program and define its communications characteristics.

When HP TestExec SL calls an action written in HP BASIC for Windows, it
automatically loads and runs HP BASIC for Windows.

1. In HP BASIC for Windows, a “widget” is an entity created on the screen
with an ASSIGN statement from an executing HP BASIC Plus program.

159

Working With Actions
Creating Actions in HP BASIC for Windows

Related Files

HP TestExec SL includes the following HP BASIC for Windows-related
files:

rmb_conf.exe A utility used to define the characteristics of your
HP BASIC for Windows server program.

server.prg An HP BASIC for Windows program file for use as a
template when creating your HP BASIC for Windows
server program.

wiipc.dll The IPC Widget used by the HP BASIC for Windows
server program.

wiipc.hlp A help file for the IPC Widget.

widgcom.dll A helper DLL for the IPC Widget.

widgcom.csb An HP BASIC for Windows CSUB used by the
HP BASIC for Windows server program.

HP TestExec SL installs these files in the home directory in which
HP BASIC for Windowsisinstalled.

Restrictions on Parameter Usagein HP BASIC for
Windows
HP BASIC for Windows only lets you pass certain types of parameters.

Shown below isalist of those types and how they correspond to one another
in both environments.

In HP TestExec SL In HP BASIC for Windows
Data Type: Data Type:
Int32 INTEGER (16-bit)
Int32Array INTEGER Array
Real64 REAL
Real64Array REAL Array

160

Working With Actions
Creating Actions in HP BASIC for Windows

Complex COMPLEX
String String
StringArray String Array
Note Integers are 32-bit in HP TestExec SL and 16-bit in HP BASIC for

Windows. If you pass Int32 or Int32Array datato an HP BASIC for
Windows action, be sure to restrict the value to a 16-bit range; i.e., -32768
through +32767. If you need values outside this range, use Real 64 types
instead of Int32.

Defining an HP BASIC for Windows Action

Be aware of the following when using the Action Definition Editor to create
HP BASIC for Windows action definitions:

e You must choose “HP RMB” as the action style.
» Leave the Library Name field blank.

* For the Routine name, enter the name of the HP BASIC for Windows
subprogram; i.e., the name of a SUB in the HP BASIC for Windows
server program.

Creating an HP BASIC for Windows Server Program

Action code you write in HP BASIC for Windows resides in a server
program that you create from a template provided by Hewlett-Packard. Do
the following to create the server program:

1. Start HP BASIC for Windows if it is not already running.

2. Copy the server template (“server.prg”) to a new name, which will be the
name of the server program that contains the action code you write. For
example,

copy "server.prg" to "MyServer.prg"

161

Working With Actions
Creating Actions in HP BASIC for Windows

3. Onthe HP BASIC for Windows command line, load the renamed server
template. For example,

| oad "MyServer. prg"

4. Type “edit” on the command line and press Enter to begin editing your
server program.

5. Add code that implements one or more actions. Begin adding your new
code on a new line beyond the end of the existing program.

Action code follows the general form shown below (line numbers have
been omitted).

...(existing code in server tenplate)
SUB <name of action routine>
COM / <name of action routine>/ <datatype> <parameter name>

...(code that does a task suitable for an action)
SUBEND

Notice that the name of the action routine must be the same in the SUB
and COM statements. Each action routine must have a uniqgue name and
its code must reside within its own matching pair of SUB and SUBEND
statements. If you need to pass more than one data type in parameters to
your action specified in a COM statement, use spaces between each data
type and its first parameter, and commas as delimiters elsewhere, like
this:

<datatype 1> <parm>, <parm>, <datatype2> <parm>, <parnv
Keep the following in mind when writing actions:
« Place all the actions for any given testplan in a single server program.

+ Do not use the STOP statement. It will cause the server to disconnect
from HP TestExec SL.

» Use ON ERROR and ON TIMEOUT trapping where appropriate to
avoid a paused—i.e., “hung”"—call to an action.

162

Working With Actions
Creating Actions in HP BASIC for Windows

* We recommend that you do not use ON...RECOVER unless you have
a thorough understanding of program flow when using a server.

« Remember that HP TestExec SL waits for your SUB to complete and
return. Thus, if you use PAUSE or DIALOG statements, the user must
interact with HP BASIC for Windows instead of with HP TestExec
SL to restore testplan flow. But if HP BASIC for Windows is
iconified, the user will be unaware that interaction is required. Either
be sure users know when interaction is required or add GESCAPE
CRT,32 at the beginning of interactive SUBS to keep them from being
iconified.

6. Save the edited server template. For example,

re-store "MyServer. prg"”

7. Run the server configuration utility (“rmb_conf.exe"), specify the name
of your modified server template in its Server Program field, and choose
the OK button to save the change and exit.

Note Do not use spaces in pathnames in the configuration utility. Instead, use
short pathnames as they appear in a DOS shell window. For example, instead
of typing “c:\Program Files\HPBASIC” you must type
“c:\Progra~1\HPBASIC".

Note Unless you have all of your HP BASIC for Windows actions in a single
server program, you must rerun the server configuration utility and specify
the name of the appropriate server program each time you change testplans.
If you change testplans often, you may want to add the server configuration
utility to the Tools menu, as described under “Adding Custom Tools to HP
TestExec SL” in Chapter 6.

Note Actions execute the fastest when HP BASIC for Windows is iconified. You
can use the Start As option in the “rmb_conf.exe” utility to specify whether
your server program starts as an icon or a window.

163

Working With Actions
Creating Actions in HP BASIC for Windows

Example of an HP BASIC for Windows Action

This section provides a simple example of how parameters are passed

between HP TestExec SL and action code created using HP BASIC for

Windows. The action is done by an HP BASIC for Windows SUB program

that receives one parameter—a radius—from HP TestExec SL, generates the
diameter and area of a circle based on that parameter, and then passes the
results back to HP TestExec SL via two other parameters.

All that is required to pass parameters between HP TestExec SL and
HP BASIC for Windows is to do the following in your server program:

e Make the name of the HP BASIC for Windows SUB program match the
name of the action routine specified in the Action Definition Editor.

* Create a labeled COM block with a name that matches the SUB name.

» List the parameters in the COM block in the same order as they appear in
the Action Definition Editor.

Suppose you have used the Action Definition Editor to provide the
following action definition information and stored it in a file called
“circle.umd” located with your HP BASIC for Windows actions.

Action name Circle

Description Calculates the diameter and area of a circle from its
radius.

Library name (none)

Routine name Circle_math

Parameters (All parameters are of type REAL.)
Radius The specified radius of the circle.

Diameter The calculated diameter of the circle (designated as an
Output).

Area The calculated area of the circle (designated as an
OUTPUT in the Action Definition Editor).

164

Working With Actions
Creating Actions in HP BASIC for Windows

The corresponding HP BASIC for Windows SUB used to implement the
action might look like this (line numbers have been omitted):

...(existing code in server program

SUB Circle _math

COM /Circle_mth/ REAL Radi us, Di aneter, Area
I

Di anet er =2* Radi us

Ar ea=PIl * (Radi us”2)

SUBEND

And the corresponding configuration for the server program might look like
this:

Callable HPBW Configuration [_ O] x|

Server Program: IE:'xF'ngra”'I YWHPBASICAMySerer PRG

HPEW Ditectary: |C \Progra™T\HPBASIC

window Tile: |HP BASIC for Windows

Hostriarne: IL':":E'I Stat Az [Tzon window |
Geometry: IBDHEEI Redraw Buffering: [Iff On |

Font: I Text Buffer Lines: I82
Colar Map: |Shale Readnly | Frivate | Colors: I1E

HFBW Waork space: I-I M

IPC Shared Space: I-I M IPC Client Timeout: II:I
Canicel | Defaults |

Debugging HP BASIC for Windows Actions

You can use standard features of the interactive HP BASIC for Windows
environment when debugging actions. For example, you can pause,
single-step, interrogate or modify the values of variables, list program
segments, and use various debugging features provided by HP BASIC for

165

Working With Actions
Creating Actions in HP BASIC for Windows

Windows. Also, keep the following in mind when debugging HP BASIC for
Windows actions:

Although the performance of actions created in HP BASIC for Windows
actions is best when HP BASIC for Windows is iconified, interactive
debugging requires a normal—i.e., non-iconified—window. The Start As
option in the “rmb_conf.exe” utility lets you specify whether your

HP BASIC for Windows server program starts as a window or an icon.
Once started, you can use standard mouse interaction in Windows to
maximize, minimize, or move the window.

While interacting with HP BASIC for Windows, do not STOP or RESET
the program because a stopped server disconnects from its HP TestExec
SL client. You can use PAUSE, STEP, and CONTINUE.

If you plan to interact with your HP BASIC for Windows workspace, we
strongly recommend that you leave the value of IPC Client Timeout at 0
(zero) in the “rmb_conf.exe” utility. Otherwise, a paused action will
eventually generate a timeout error.

166

Working with Switching Topology

This chapter describes how to use switching topology, which is a combination
of physical and logical descriptionsthat define the switching configuration and
interconnections between resources and the unit under test.

For an overview of switching topology, see Chapter 3 in the Getting Sarted
book.

167

Note

Working with Switching Topology
Defining the Switching Topology

Defining the Switching Topology

When you “define” switching topology, you describe its characteristics so
the Test Executive is aware of switchable paths in your test system. Also,
you make the Test Executive aware of hardware modules that are available
as resources during testing.

Your overall goal in defining the switching topology is to describe the
hardware well enough to let the Switching Path Editor control switching
paths during a test, but not so well that you describe every nuance of how the
test system is wired. Thus, your emphasis should be on describing switching
paths inside modules and any wires that interconnect these switching paths.

Overview

The Switching Topology Editor lets you define the three layers of topology

for your test system. This topology information resides in three files:
<system_name>.ust Contains a definition of the system layer.
<fixture_name>.ust Contains a definition of the fixture layer.

<UUT_name>.ust Contains a definition of the UUT layer.

When you specify which layer to create in the Switching Topology Editor, it
loads the appropriate file.

= New Topology Layer

Select the type of topology
layer you wish to create.

Cancel

? Fixture Layer

] System Layer

Shown below is an example we will work through. Let us begin at a
conceptual level and identify the task at hand. Suppose your goal is to

168

connect an instrument to pins on the UUT so the instrument can make a

Working with Switching Topology
Defining the Switching Topology

measurement. To provide flexibility in connecting the instrument, an
Instrument Matrix module connects the instrument to an anal og bus structure

connected to two Relay Matrix modules. One of these modules—the one in
which you are interested—is connected to a mass interconnect, which is the
nexus for connections between the test system and the UUT. From there,

fixturing or cabling connects the mass interconnect to the UUT.

Instrument

2X2
— Instrument —
| Matrix _|
Module

R 2X4

analog bus

Relay Matrix

Module #1

2X4
Relay Matrix

Module #2 ™

%
%
%
%
2
>
Q
Q,
%
>

Mass Interconnect

fixturing/cabling

uuTt

169

Working with Switching Topology
Defining the Switching Topology

The conceptua diagram above lacks details needed to describe real
hardware, such as pin numbers and connectors. These details are shown

next.
DVM
2
£ O
= =
= N Q [}
g |2 g ¢
E E © ©
_E |® g 5 Ll
sl |2 £ £ BER
%] 1]
51] £ Insltl\Aatrix:ABus1 PinCard1:AB'u§1 I 2X4
il |- 'l L: :J L: L: Relay Matrix
InstMatrix:ABus2 PinCard1:ABus2 | | | | Module #2
InstMatrix | PinCard1 | | | |
¢ 000 | | | |
1A-19 @ 9 Q1A4
SyStem Layer [Mass Interconnect
[1 Fixture Interface
Fixture Layer *~—
UUT Layer

M atching Physical Hardwareto L ogical Names

Where Do the Names of Switching Paths Come From?

One question upon examining the example above might be, “Where do the
names of signal paths used in switching, suchrest Mat ri x: ABus1,

come from?” The names of switching paths inside a module are assigned by
whoever develops the hardware handler for the module. The Switching
Topology Editor lets you use these names to define your test system's
topology. The names of other items, such as the pins on connectors, are

170

Working with Switching Topology
Defining the Switching Topology

defined by you and usually reflect the physical characteristics of the item.
For example, connl- 1 ispin 1 of the connector named connl.

In the example above, the hardware handler’s developer chose

I nst Mat r i x asthe namefor the 2 X 2 Instrument Matrix Module. In a
similar fashion, the first 2 X 4 Relay Matrix Module was named

Pi nCar d1. Both of these modules contain switching elementsthat connect
rows with columns when they close. The columnsinthel nst Mat ri x
modul e connect to an instrument, so they are named
InstMatrix:Instrlandl nstMatri x: I nstr2,andtherowsin

| nst Mat ri x connect to the analog bus, so they are named

| nst Matri x: ABusl and| nst Mat ri x: ABus2.

Theimportant thing to realize hereisthat the intersection of any two of these
identifiers is a switching element that can be controlled by the Test
Executive during atest. For example, at the intersection of
InstMatrix:Instrlandl nst Matri x: ABus2 isarelay that, when
closed, connectsthe hi side of the DVM to the second analog bus. If this
connection is needed during atest, then you could use the Switching Path
Editor to tell the Test Executive when to close (and reopen) it.

Switching elements inside module Pi nCar d1 connect the analog busses
with wiring to the mass interconnect, which is the interface between the test
system and the cabling/fixturing that connects to test system to the UUT.
Connections on the analog bus are denoted the same as their counterpartsin
thel nst Mat ri X module, while columnsin Pi nCar d1 areidentifiedina
more generic senseas Pi nCar d1: Col 1 through Pi nCar d1: Col 4.

Using Aliasesto Simplify the Names of Switching Paths

Although this approach accurately describes the hardware, it lacks
convenience for test developers who must remember which connectionis
which when using the Switching Path Editor. For example, the name

I nst Mat ri x: |1 nst r 2 provides no clue as to what that signal path
actually is.

Theremedy for thisisto use aliases. Aliases let you simplify the definition
of the hardware. For example, instead of referring to

I nst Matri x: I nstr 2 you could assign it an alias of DVM_| ow. From
then on, you could think in terms of “Conn&M | owto. . ." instead of
"Connectl nst Mat ri x: I nstr 2 (whatever that is!) to. . ."

171

Working with Switching Topology
Defining the Switching Topology

When Should | Specify Wires?

Remember that the Switching Topology Editor also lets you define wiresin
each layer. An example of awireisthe wire that connects

I nst Matri x: ABusl toPi nCar d1: ABusl. Becausethisisa
connection between modules whose characteristics are modeled in a
hardware handler, you should describe it as part of the topol ogy.

What about the wires that connect the DVM to | nst Mat r i x? Should they

be defined too? Probably not, because defining them offers no additional
functionality. Because instruments (and connectors) are not modeled—i.e.,
they are not defined in hardware handler software—the Test Executive is
unaware of their characteristics and cannot control them.

What Happens If a Node Has M ultiple Names?

Each named electrical point in the switching topology is called a “node.” As
described above, the use of aliases and wires lets a node in the topology
potentially have more than one name. But if a node has more than one name,
which name appears as the “preferred name”—i.e., the name used to
construct a switching path—when you use the Switching Path Editor?

An example of this is shown below. Here, a node has three possible names:
ABusl1, | nst Matri x: ABusl, andPi nCar dl: ABusl. The preferred

172

Working with Switching Topology
Defining the Switching Topology

name, ABus1, probably isthe most meaningful of the three because it
describes a mgjor path rather than a node at one end of the path.

-— Switching Path Editor
Use this dialog to definefedit/view a switch path.
Current Path:
| [DVM_lo ABusl CPU_gnd] |
[HNodes I Selected Hode Information
First analog bus
ROOT *
Preferred DVM_lo
name CPU_gnd
¥ia: |PinCardl [13 1)
Altermnate Names:
InstMatnx:ABusl
r FPinCard1:ABus1
1 Soit node names ?
Alternate
| Select I | Back Up I names

Part of the value you can add when defining topology is to ensure the “best”
name (the name that makes the most sense for your circumstances) for each
feature in the topology will appear as the preferred name seen by test
developers when they define switching paths.

How Do | Specify the Preferred Name for a Node?

You can specify the preferred name for a node by defining the topology in
accordance with the rules the Switching Path Editor uses when it displays
the preferred node name. In order of precedence, you should:

Do this . .. Because . ..

Assign useful keywords when When you use the Switching Path

defining wires or aliases. Editor's “Filter” feature to restrict the list
of nodes, the preferred name is chosen
based on the keyword(s) associated
with the wire or alias.

173

Working with Switching Topology

Defining the Switching Topology

When a node is referenced in
more than one topology layer,
use the preferred name in the
layer that has precedence.

When a node is associated with
a series of aliases—i.e., one
alias is aliased to another
alias—in the same topology
layer, give the preferred name to
the first alias in the series.

When a node is associated with
both a wire and an alias in the
same topology layer, give the
preferred name to the alias.

When a node is associated with
multiple aliases (but no wires) in
the same topology layer, do
whatever you like.

Defining the System L ayer

The order for choosing preferred
names is UUT layer before fixture layer
before system layer.

Within a single layer of topology, the
preferred alias in a series of aliases is
the first in the series. For example, if
al i aslisaliased to al i as2 thatis
aliasedto al i as3, the preferred name
isal i asl.

Within a single layer of the topology, an
alias associated with a node is
preferred over a wire associated with
the same node.

Within a single layer of the topology
when multiple aliases exist, the alias
chosen will be the last one entered
when defining the topology. Because
this method tends to be unpredictable,
you should not rely upon it.

Continuing with the example above, you could use the Switching Topology
Editor to define the following for the system layer of topology:

M odules:
InstM atrix
PinCardl

Wires;

“ABusl” connectd nst Mat ri x: ABusl toPi nCar d1: ABus1
“ABus2” connectd nst Mat ri x: ABus2 toPi nCar d1: ABus?2

These wires are necessary because they interconnect switching modules
whose topology is known to the Test Executive. The topology is known
because each module's characteristics are declared in its corresponding
hardware handler software (described later). Because each module's

174

Working with Switching Topology
Defining the Switching Topology

topology has been modeled for the Test Executive, the Switching Path Editor
can control switching elementsin it via switching actionsin tests.

Using the Switching Topology Editor to specify topology, the definition of
the first wire shown above might look like this:

=Aliases Name:
[ires ame: | Abusi | | Add I
EModules . Description: | analog bus #1
ClInstMatrix
CIPinCard1
Kepwords: | |
[Connections
Hef Layer Ref Mode
system InstMatrix:Chan1 Mew Conn I
system PinCard:Chan1
Move Up
Reference Layer: Reference Mode:
|system |£I |PinCard:Chan1 | Update Conn I
Filter: PinCard:Chan1
laLL [#] |PinCard:Chan2
Aliases:

I nst Matri x: I nstr 1 inthesystem layer diased asDVM hi inthe

system layer

I nst Matri x: I nstr 2 inthesystem layer diased asDVM | o in the

system layer
nCar d1: Col 1 inthe system layer aliased as 1A- 1 in the system

Pi

layer
Pi

layer
pi

layer
Pi

layer

nCar d1: Col 2 inthe system layer aliased as 1A- 2 in the system
nCar d1: Col 3 inthe system layer aliased as 1A- 3 in the system

nCar d1: Col 4 inthe system layer aliased as 1A- 4 in the system

Aliases were used here instead of wires because there are no switchable
connections. For example, the existence of the cable that connects

175

Working with Switching Topology
Defining the Switching Topology

| nst Mat ri x with theinstrument isagiven, asisthe wiring that connects
the columns of relays on Pi nCar d1 with the mass interconnect. If thereis
no switchable connection to contral, it's simplest to use an alias to specify
various points along the path.

The benefit of all thiswork becomes more apparent when you consider how
these definitions can simplify the way you specify connections with them.
Suppose you want to make a connection between the high terminal on the
DVM and apin on the massinterconnect. Given the definitions of wiresand
aiases shown above, it could be done as simply as this:

[DVM_hi ABusl 1A-2]

Note This convention of enclosing the path in brackets and having adjacent nodes
separated by spacesis the default used in the Switching Path Editor. To
avoid confusion when using the Switching Path Editor, we recommend that
you do not use spaces or brackets ([]) when naming features in the topol ogy.

Anoptional Node Separ at or entry inthe[Swi t chi ng] section of

HP TestExec SL’s initialization file, ‘}P TestExec S

home\bin\tstexcsl.ini”, lets you specify which character appears as the
separator between adjacent nodes for a given installation of HP TestExec
SL. For examplelNode Separ ator = | defines a vertical bar as the
separator. The separator is not saved with testplans, so if you move a testplan
from one test system to another the separator may change.

This describes a connection from one terminal on the DVM, through the
relay at the intersection dfhst Mat ri x: I nstr 1 and

I nst Mat ri x: ABus1l, across théBus connecting

I nst Mat ri x: ABus1 andPi nCar d1: ABus1, through the relay at the
intersection oPi nCar d1: ABus1 andPi nCar d1: Col 2, and through

the wire that connec® nCar d1: Col 2 to pin1A- 2 on the mass
interconnect. Notice how much more complicated the actual path is than the
notation needed to describe it using wires and aliases.

176

Note

Working with Switching Topology
Defining the Switching Topology

Defining the Fixture Layer

The fixture layer for the previous example might look like this:

Wires:
connl- 1 inthefixture layer connected to 1A- 1 in the system layer
connl- 1 inthefixture layer connected to 1A- 2 in the system layer
connl- 2 inthefixture layer connected to 1A- 3 in the system layer
connl- 3 inthefixturelayer connected to 1A- 4 in the system layer

At first glance, you may wonder why these aren't defined as aliases. After
al, there are no switchable paths in the fixture layer. Notice, however, that
both pins 1A- 1 and 1A- 2 of the mass interconnect are connected to pin 1 of
connl. This means that two distinct paths exist to connl- 1, depending
upon which relay isclosed on Pi nCar d1. Thus, these should be defined as
individual wires and not simply aliases for the same point.

If desired, you also could use a combination of wires and aliases, like this:

Wires:
connl- 1 inthefixturelayer connected to 1A- 1 in the system layer
connl- 1 inthefixturelayer connected to 1A- 2 in the system layer

Aliases:
connl- 2 inthefixture layer aliased as 1A- 3 in the system layer
connl- 3 inthefixture layer aliased as 1A- 4 in the system layer

Thislayer has no modules defined for it because there are no switching
modulesin thefixture layer for thisexample. If your fixturing included some
form of eectronicsthat was controlled via a hardware handler, you could
define it asamodulein this layer.

We recommend that all references from the fixture layer to the system layer
specify pin identifiers on the mass interconnect and not specify aliases or
nodes other than pins on the mass interconnect in the system layer.
Following this suggestion lets you alter wiring in the system layer without
affecting the fixture.

Shown below is auseful variation on defining topology in the fixture layer
(but which will not be a part of the ongoing example). Suppose that instead

177

Working with Switching Topology
Defining the Switching Topology

of using arelay matrix module to connect an external instrument, you
connect it to the test system viawiring in the fixture. In other words, when
you install the fixture used to test a specific UUT, that fixture contains a
connector to which the instrument is attached. The idea here is that by
connecting the external instrument to the test system through the mass
interconnect, you make the instrument accessible to any relay matrix cards
in the test system.

DVM
Hi Lo Relay Matrix

(mml
[
M
[
(mm
[

M
[
(mml
[

System Layer

2-1] 2-2 1-1] 1-2] 1-3{ 1-4]| 1-5] Mass Interconnect

} Fixture Interface

wiring inside the fixture Fixture Layer

r L‘ UUT Layer

How would you define this topology? Because the connection between the
external instrument—"DVM"—and the test system does not contain a
switchable path, you could specify the topology as:

Wires:
DVM hi in the fixture layer (no connections to other layers)
DVM | o in the fixture layer (no connections to other layers)

Aliases:
DVM hi in the fixture layer aliased 4s 2 in the system layer
DVM | o in the fixture layer aliased 4s 1 in the system layer

Defining wires without connections and aliasing them to pins on the mass
interconnect makes them equivalent. Thus, a refererideMol o actually
means pirl- 1 on the mass interconnect in the system layer.

178

Working with Switching Topology
Defining the Switching Topology

Defining the UUT Layer

Continuing the example, the topology definition for the UUT layer might
look likethis:

Aliases:
connl- 1 inthefixture layer aliased asCPU i n inthe UUT layer
connl- 2 inthefixture layer aliased asCPU_gnd in the UUT layer
connl- 3 inthefixture layer aliased asCPU_out inthe UUT layer

These are al aliases because there is no switchable path; i.e., the aliasing is
being done simply for the convenience of specifying CPU_i n when using
the Switching Path Editor instead of trying to remember what is connected
towhich pinon connl or to pinson the UUT.

Notice how the aliases are used to alias items in one topology layer with
itemsin another layer. This was necessary because connector connl isthe
physical interface between the system and UUT layers.

Thislayer has no modules defined for it because there are no switching

modules in the UUT layer for this example. It has no wires defined for it

because there are no adjacent nodes—i.e., nodes with a switching element
between them—between the fixture and the UUT.

Given the topology defined in all three layers, when creating a test you could
use the Switching Path Editor to define a connection between the low
terminal on the DVM and ground on the CPU as:

[DVM_lo ABus2 1A-3 CPU_gnd]

179

Working with Switching Topology
Defining the Switching Topology

An example of thisis shown below.

= Switching Path Editor
Usge this dialog to define/edit/view a switch path.

Current Path:
[[DVM_lo ABus1 CPU_gnd] |
Modes Selected Node Information

rier: R #| | | 0osc:ition

ROOT Y First analog bus

DVM_lo =
CPU_gnd

Via: |PinCard1 [13 1]

Alternate Names:

InstM atrix:ABus1
PinCard1:ABus1

[Sort node names

| Select Il Back Up I

Using the Switching Topology Editor

To Createa Topology Layer

Use the Switching Topology Editor’s graphical tools to create a topology
layer.

1. Click IE in the toolbar or choose File | New in the menu bar.
2. Choose “Topology Layer”.
3. Choose the OK button.

4. Use the Switching Topology Editor Options box to specify which type of
topology layer to create.

180

Working with Switching Topology
Defining the Switching Topology

5. Choose the OK button.

6. When the Topology Layer window appears, use it to define the topology
for the layer.

7. (optional) If you wish to include summary information about the
topology layer, do the following:

a. Choose File | Revision Information in the menu bar.

b. Usethe Topology Information box to enter summary information in
the appropriate fields.

Tip: For Current Revision, use the Major number to denote large
changes to the topol ogy layer, such as adding a number of aliases,
wires or modules. Use the Minor number to denote small changes,
such as defect fixes or minor enhancements.
¢. Choose the OK button to close the dialog box.
8. Choose File | Save Asin the menu bar.

9. Specify aname for the file in which the layer is saved.

Tip: The names of files for topology layers must have a “.ust”
extension—e.g., “system.ust”.

10.Choose the OK button to save the file.
Using Aliases

To Add an Alias
Do the following in the Topology Layer window:

1. Click the Aliases folder in the list area (left pane).

2. Use the editor (right pane) to specify the information for the alias.

181

Working with Switching Topology
Defining the Switching Topology

The information you must specify for an alias includes:

Name The name of the alias.

Note: We recommend that you do not use spaces
or brackets ([]) in names because that makes
switching paths more difficult to read.

Description A description of the alias.

Keywords One or more keywords, separated by commas,
that aid users when searching for this alias among
all the possible aliases. Keywords are used by the
Filter feature.

Reference Node An existing name that specifies a node in a
topology layer.

Note: Click the arrow to the right of Filter to
invoke alist of keywords that restrict the search
criteriain the Reference Node list.

Reference Layer The topology layer that contains the reference
node.

3. Choose the Add button.

To Modify an Alias

1. Inthe Topology Layer window, click to open the Aliasesfolder in thelist
area (eft pane) if it is not already open.

2. Click the alias you wish to modify.

Tip: You can use thelist of keywords under Filter to reduce the length of
the list of reference nodes that appears.

3. Usethe editor (right pane) to modify the information for the existing
dias.

4, Choose the Update button.

182

Working with Switching Topology
Defining the Switching Topology
To Delete an Alias

1. Inthe Topology Layer window, click to open the Aliases folder in thelist
area (left pane) if it is not already open.

2. Click the alias you wish to delete.
3. Do either of the following:
e Press the Del key.
-or -
» Choose Edit | Delete in the menu bar.
4. Choose the Update button.
Using Wires

To Add aWire
Do the following in the Topology Layer window:

1. Click the Wires folder in the list area (left pane).
2. Use the editor (right pane) to specify the information for the wire.

The information you must specify for a wire includes:

Name The name of the wire.

We recommend that you do not use spaces or
brackets ([]) in names because that makes
switching paths more difficult to read.

Description A description of the wire.

Keywords One or more keywords, separated by commas,
that aid users when searching for this wire
among all the possible wires. Keywords are used
by the Filter feature.

183

Working with Switching Topology
Defining the Switching Topology

Connections One or more nodes to which the wire is
electrically connected.You can click:

New Conn — add a new connection to the list.

Delete Conn — remove the selected connection
from the list.

Move Up — promote the position of the selected
connection in the list.

Move Down — demote the position of the
selected connection in the list.

Reference Node An existing name that specifies a node in a
topology layer.Note: Click the arrow to the right
of Filter to invoke a list of keywords that restrict
the search criteria in the Reference Node list.

Reference Layer The topology layer that contains the reference
node.

3. Choose the Add button.

To Modify aWire

1. Inthe Topology Layer window, click to open the Wires folder in the list
area (left pane) if it isnot already open.

2. Click the wire you wish to modify.

Tip: You can use thelist of keywords under Filter to reduce the length of
the list of reference nodes that appears.

3. Usethe editor (right pane) to modify the information for the existing
wire.

4. Choose the Update button.

184

Working with Switching Topology
Defining the Switching Topology

To Delete a Wire

1. Inthe Topology Layer window, click to open the Wires folder in the list
area (left pane) if itisnot already open.

2. Click the wire you wish to delete.
3. Do either of the following:
e Press the Del key.
-or -
» Choose Edit | Delete in the menu bar.
4. Choose the Update button.

Using M odules

To Add aModule
Do the following in the Topology Layer window:

1. Click the Modules folder in the list area (left pane).

2. In the editor (right pane), click the Library field and either type the name
of the library file that contains the module 's instrument driver/handler or
use the Browse button to find the correct file.

3. Choose the Add button to load the parameter block for the module.

4. If you are using a VXllug& play driver, enter the Prefix (described
below) that identifies the instrument.

5. Choose the Add button to make the parameter block for the instrument
appear.

6. Do the following for each parameter in the list under Parameter Block:

a. Select the parameter.

185

Working with Switching Topology
Defining the Switching Topology

b. Choose the Edit button.

¢. Specify theinformation to be passed in the parameter.

7. Entering the remaining information for the module (described below).

8. Choose the Update button.

The information you must specify for amodule includes:

Name

Disable

Description

Prefix

Library

Parameter block

A unique name for the module.

We recommend that you do not use spaces or
brackets ([]) in names because that makes switching
paths more difficult to read.

Enable this box to have the Test Executive ignore the
module, such as when you remove it for calibration.

A description of the module.

An identifier that is generally used with

VXIplug& play instruments to identify the type of
instrument. Enter the name of the instrument as it
appears in calls to the VXIplug& play driver; e.g.,
calls to the HP66312 begin with “hp66312” (as in
“hp66312_init") so that is what you should enter.

The name of the library (DLL) that contains the
hardware handler for the module. In the case of a
VXIplug& play instrument, specify the name of the
DLL in which the VXIplug& play driver for the
instrument resides.

Click the Browse button to invoke a graphical
browser you can use to choose the appropriate DLL.

A list of parameters passed to the module in its
parameter block.

If the DLL for the module is not found, the list under
Parameter Block will be empty.

186

Working with Switching Topology
Defining the Switching Topology

To Modify aModule

1. Inthe Topology Layer window, click to open the Modules folder in the
list area (Ieft pane) if it is not already open.

2. Click the module you wish to modify.

3. Usethe editor (right pane) to modify the information for the existing
module.

4. Choose the Update button.

To Delete a M odule

1. Inthe Topology Layer window, click to open the Modules folder in the
list area (Ieft pane) if it is not already open.

2. Click the module you wish to delete.
3. Do either of the following:
e Press the Del key.
-or -
» Choose Edit | Delete in the menu bar.
4. Choose the Update button.

Duplicating an Alias, Wire, or Module

Instead of specifying the characteristics of similar aliases, wires, or modules
multiple times, you can copy an existing item and then rename it or modify
its characteristics.

1. With a switching topology layer loaded, select an existing alias, wire, or
module in the left pane (list area) of the Switching Topology Editor.

2. Choose Edit | Duplicate in HP TestExec SL's menu bar.

The duplicate entry will appear below the existing entry.

187

Working with Libraries, Datalogging,
Symbol Tables, & Auditing

This chapter describes how to use libraries of actions and tests to promote code
reusability, datalogging to collect data during testing, symbol tables to store
global variables, and auditing features to track software revisions.

For related overview topics, see Chapter 3 in the Getting Started book.

189

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

Using Test & Action Libraries

For an overview of test and action libraries, see “About Test & Action
Libraries” in Chapter 3 of th&etting Sarted book.

How Keywords Simplify Finding Itemsin Libraries

When you save an action definition or a test definition in a library, you have
the option of specifying one or more “keywords” with the definition. A
keyword is an identifier used to restrict the number of matches found when
searching for a specific item. Keywords often describe the item; for
example, suitable keywords for an action might be “trigger” or “range” to
identify what the action does or how it is used.

Because the number of actions you create can grow quite large, when
working with actions (as opposed to tests) you can use an additional feature
called “master keywords.” Master keywords are keywords stored in an
editable predefined list, which lets you quickly choose a keyword when
creating actions. A major benefit of master keywords is that you can
standardize the list for consistency when finding actions in libraries.

Having meaningful keywords assigned to items in libraries lets you use
HP TestExec SL's browsing tools to find items quickly. Although specifying
keywords requires slightly more effort initially, over time you will benefit
from enhanced code reuse.

Searching for Itemsin aLibrary

Before you can search libraries, you must set up their search paths, as
described under “Specifying the Search Path for Libraries.”

190

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

A common task when creating testplans is to search for actions and tests to
use in them. Variations on the search mechanism bel ow, which shows
searching for an action to insert into atest, are common in HP TestExec SL.

Select an Action to Insert

=P [Search by kepwords

Available Search Kewwords: Search on Keypwords:

Add -» |

Doing
the

clear

search closs . |
corfig <- Bemaove
digitizer

rmor I Clear |
- =
fremnenen

Ly
—> r Search Results
Action Mame;
IBandwidth Description:
Thiz action mak.es a bandwidth measurerment on the -
Results digitized waveform. _I
of the
search
Ly Filename: Ic:'\pmgram fileshhp testexec shsampleshfiterdemobactions\bandwidth. umd Detail |

Keyword, or identifiers, associated with actions and tests et you restrict
searches to a subset of all possible items. Once you have searched for items
whose keywords seem appropriate, you can inspect the resultant list and
choose the correct item from it. Or, you can set up a new search and try

again.

191

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

The general procedure for doing a search is shown below.

Select an Action to Insert |

r Search by kepwords

Axalable Search Kewwords:

Search on Kemwords:

2 Add them
& to the list

ri=ak

1 Select

initialize keywords

- <-Eemu:we| 3 Do the
rodule search
L LI Clear |

| freEuencE Search |

If desired, you also can:

Choose the Remove button to remove a selected keyword from the search
list.

Choose the Clear button to remove all keywords from the search list.

Strategiesfor Searching Libraries

Built into the Test Executive's graphical tools are several features that help
you search the contents of libraries for a specific routine. Your general
strategy when searching should be to reduce the list of matches as quickly as
possible, until only a few potential items of interest must be browsed to find
the desired one.

To quickly find the item of interest, you can:

Limit the list of library directories of each type to be searched.

By restricting the list of directories to those most likely to contain entries
useful for the test under development, you can eliminate many
unnecessary entries before beginning the search.

Use keywords to narrow the search.

192

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

Select one or more keywords from those known to be in the entries, and
only library entrieswith all the selected keywords will be displayedinthe
list of matches.

Type the first few characters of the name of the desired entry to position
the list of entries to the appropriate part of the alphabetized list.

The features used to search libraries work best when the libraries are
carefully defined and organized. Where possible, do the following:

Organize library directories such that the entries in them are logically
related and likely to be needed in similar testing situations.

Be sure that the names of libraries and the entries in them reflect their
contents.

Use meaningful keywords when describing the entries in libraries.

Provide related entries with similar prefixes on their names (which
improves the functional test software's ability to sort by name).

Use the Test Executive's Action Libraries box or Test Libraries box to
find whichever kind of routine you need.

Specifying the Search Path for Libraries

HP TestExec SL lets you specify the search paths for action definitions,
dynamic link libraries (DLLs), HP VEE libraries, instrument drivers,
National Instruments LabVIEW libraries, symbol tables, test definitions, and
layers in the switching topology. You can specify these paths at two levels:

Testplan-specific The paths are specific to whichever testplan currently

is loaded, and override paths specified at the System
level.

System-wide Default paths that apply unless they are overridden at

the Testplan level; i.e., if you create a new testplan
and do not specify specific paths for it, these defaults
will be used.

193

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

In either case, you use a dialog box similar to the one shown below.

E:-:eu:utiu:unl Hepnrtingl Profiler | Search Paths |

Search paths for, I'.r_-,' i

Diynamic Link, Libraries
gy HF VEE Libraries

Sl | trument Dirivers

Ml LabWIE'W Libraries
Symbol T ables

Testplan specific;

:WProgram Files [hgert...

Edit...

Delete

Lt I | _PI biowe Up

Mo Doy

iUl

System-wide:

2 WProgram Files\HP TestEwec SL

Note Search paths are searched in the order shown in the lists under
Testplan-specific and System-wide. This means that if your testplan uses a
specific DLL, and multiple instances of that DLL exist on your test system,
only the first instance of the DLL to be found will be used.

Given the above, modifying the order in which the paths are searched
potentially influences which items are found. You can use the Move Up and

Move Down buttons or “drag and drop” with the mouse to reorder the search
paths in the lists.

To Specify System-Wide Search Pathsfor Libraries

1. With no testplan loaded, choose Options | System Options in the menu
bar.

2. Inthe list to the right dbear ch pat hs for:, choose which kind of
system-wide search path you wish to specify; i.e., a search path for action
definitions, dynamic link libraries, etc.

3. Choose the Insert button.

194

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

4. When the Insert Path box appears, either type a search path directly into
the data entry field or choose the Browse button and use the graphical
browser to specify a search path.

5. Choose the OK bhutton to save the new path in the list under
System-wide.

To Specify Testplan-Specific Search Pathsfor Libraries

1. With a testplan loaded, click in the toolbar or choose
View | Testplan Optionsin the menu bar.

2. Inthe Options box, choose the Search Paths tab.

3. Click to select an insertion point in the list of search paths under
Testplan-specific.

If you click in the list of System-wide search paths, you also can specify
those here. Be aware, though, that changes made here become the new
system defaults. Use whichever method you prefer.

4. Choose the Insert button.

5. When the Insert Path box appears, either type a search path directly into
the data entry field or choose the Browse button and use the graphical
browser to specify a search path.

6. Choose the OK button to save the new path in the list under
Testplan-specific.

To Remove a Path from the List of Search Paths
1. Click in the toolbar or choose View | Testplan Optionsin the menu
bar.

2. Inthe Options box, choose the Search Paths tab.

195

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Test & Action Libraries

3. Ineither of thelists of search paths, click the search path to be deleted.
4. Choose the Delete button.

5. Choose the OK button.

Using Search Pathsto I mprove Testplan Portability

Having two levels of search paths, testplan-specific and system-wide as
described above, is especialy useful when testplans must be transportable
across test systems. For example, if you specify only system-wide search
paths, atestplan moved from one system to another will automatically use
the default search paths for the new system. On the other hand, specifying
testplan-specific search paths lets you override the defaults as needed, so
you know exactly which files a given testplan will use.

196

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

Using Datalogging

This section discusses datalogging options, disabling datalogging for
individual tests, using datalogging with Q-STATS programs, datalogging
files and their formats, and how to change between datal ogging formats.

What Happens During Datalogging?

Datalogging automatically collects data about tests when atestplan runs.
Subsequent study of this data can help you improve the testing and
manufacturing process and track the testing done on a particular UUT.

The system writes anew file of datal ogging information each time atestplan
or aloop in atestplan runs. The system automatically names each file with a
unique hexadecimal name derived from the time and gives it a “.log”
extension.

The flow of data when datalogging is shown below. First, data acquired
during testing is formatted using a definition for internal data, and stored
internally. Next, the internally stored log data is reformatted using a
definition for output data, and saved in an external data file for subsequent
analysis.

Test Executive

Testplan

Testing Data acquired > Formatter for > il)l;etli‘:ta;

activities -_during testing internal data |

Formatter for

log data output
* storage g + P l
Definition for how Definition for how ng data Qle
internal data is stored output data is formatted xxx.log

197

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

What isthe Format of L ogged Data?

The two standard formats for datalogging are:

HP 3070-style Records conform to a subset of the log record format
produced by an HP 3070-family board test system (but
does not include HP 3070 shorts, digital, and repair
records). This means you can use Derby Associates
Q-STATS Il or HP Pushbutton Q-STATS to do
statistical analyses of log data.

Spreadsheet Fields are separated by commas, and each record is

format on a separate line. This format is readable by most
spreadsheet or database programs. This lets you
develop your own methods for analyzing log data with
the functions available in a spreadsheet.

Asits default, log data generated by HP TestExec SL supports the HP 3070
format

Controlling How Datalogging Works

To Set the Datalogging Optionsfor an Entire Testplan

1. Click inthe toolbar or choose View | Testplan Optionsin the menu
bar.

2. When the Testplan Options box appears, choose its Reporting tab.

3. Choose the desired options.

198

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

The global datalogging options for atestplan are:

Enabled When this box is checked, datalogging is enabled for
the current testplan, and datalogging is disabled when
the box is unchecked.

Log Report When this box is checked, any messages that appear
Information in the Report window will be included in the
datalogging log file.

Log Level Determines how much and which kind of data is
collected during datalogging, as follows.

Al'l — Logs data from all tests.

None — Logs an indication that the testplan was run,
but does not include specific information about how the
tests passed or failed.

Fai | ures — Logs failed tests only.

Sanpl ed — Uses Sanpl e r at e %as a probability
to determine whether to log a test. For example, if you
set the sample rate to 10%, an average of 1 out of 10
tests will run with full datalogging while the other 9
tests will log failures only.

Sanpl e rate % — Sets the percentage of test
runs to be sampled.

Log Directory Specifies the directory that will hold the datalogging
files. (By default, log data is stored in directory
“\logdir”.) If the system cannot access the indicated
directory, log files will be temporarily placed in the
directory specified by the system variable TMP.
(Usually this is the “\temp” directory.) The system will
attempt to move the log files to the current log directory
each time a testplan runs.

4. Choose the OK button.

199

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

To Set the Datalogging Optionsfor an Individual Test

1. Click atest of interest in the |eft pane of the Testplan Editor window.
2. Choose the Optionstab in the right pane of the Testplan Editor window.
3. Choose the desired options for the test.

The datalogging options for individual tests are:

Generate Check this box and the selected test's data will be
unigue names logged under a uniqgue name each time the test is
for datalogging executed inside a loop (such as For . . . Next).

when looping

Pass/Fail only Check this box to disable datalogging for the

affects ‘On Fail selected test.

Branch To’
Be aware that this option does more than turn off
datalogging for an individual test. It also disables
any pass/fail messages normally sent to the Report
window, cancels any effect of the test on global
pass/fail information, and causes statement tracking
to be skipped for the test. However, the “On Fail
Branch To” feature still works.

Override the If you want to have the selected test logged under a
Test Name for different name, check this box and specify the new
Datalogging name in the data entry field to the right of New

Test Nane for datal ogging:.

4, Choose the OK button.

To Select the Datalogging For mat

The default data definition and data format files, “dsdef.ini” and
“hpfmtdef.ini”, produce HP 3070-style log data. You can switch between the
HP 3070 and spreadsheet datalogging formats by editing the HP TestExec
SL initialization file, as follows.

200

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

1. Useatext editor, such as WordPad in its text mode, to open the

4.

5.

“<HP TestExec SL home>\bin\tstexcsl.ini” file.
In the “[Data Log]” section of the file, locate the entries

Definition File=$ROOT$\ bi n\ XXdef . i ni
Format Fi | e=$ROOTS$\ bi n\ XXf nt def . i ni

where

$ROOTS is the drive and directory name for the HP TestExec SL
software

XXdef . i ni is either “dsdef.ini” or “ssdsdef.ini”
XXf nt def . i ni is either “hpfmtdef.ini” or “ssfmtdef.ini”.

Change the file entries to specify either HP 3070 or spreadsheet format.

To use this format... Specify these files...
HP 3070 log record “dsdef.ini” and “hpfmtdef.ini”
Spreadsheet-compatible “ssdsdef.ini” and “ssfmtdef.ini”

Save the modified initialization file.

Restart HP TestExec SL.

For more information about datalogging formats and customizing
datalogging, see Chapter 3 in thestomizing HP TestExec S book.

Using Datalogging with Q-STAT S Programs

When you use the default HP 3070-style datalogging records, you can use
Derby Associates Q-STATS Il or HP Pushbutton Q-STATS to do statistical
analyses of log data. This section describes how to pass limits to these
programs and restrictions on the names of tests.

201

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

To Set the Learning Feature & PassLimits

You must pass limits to the Q-STATS program to construct accurate

histograms from the data. To pass|imits, you must run the testplan once with

the learning feature set to “on.” This setup tells the Q-STATS program that
you will pass data limits as well as values.

1. Choose Options | Testplan Options in the menu bar.

2. When the Testplan Options box appears, choose its Reporting tab.

3. Turn on datalogging by enabling the Enabled check box under
Datalogging.

4. Set the datalogging level to “all” by enabling the All radio button to the
right of Log Level..

5. Choose the Execution tab in the Testplan Options box.
6. Select Ignore All Failures under Sequencer Halting on the Execution tab.
7. Run the testplan.

Any time you change the test limits, you must re-run the testplan with
learning set to “on” like this.

Restrictions on the Names of Tests

Q-STATS Il and HP Pushbutton Q-STATS each impose restrictions on the
test names that you choose within HP TestExec SL:

e For HP Pushbutton Q-STATS, you must not use slashes (/ or) in test
names.

e For Q-STATS I, only the first 40 characters of the test name are
significant.

202

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Datalogging

Managing Datalogging Files

If you set the datalogging level to “all’, HP TestExec SL can quickly fill up
the disk that contains the datalogging directory. See “Managing Temporary
Files” in Chapter 6 for more information.

203

Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Symbol Tables

Using Symbol Tables

About Symbol Tables

Symbol tables contain data items (variables) called “symbols” whose scope
makes them available at various places inside a testplan. You access symbols

in symbol tables by referencing them from tests or actions.

Symbols in this table...

Have this scope

Sequencelocals

System

TestPlanGlobals

TestStepLocals

TestStepParms

External (user-named)

Across all tests in a sequence; i.e., each
sequence has its own SequencelLocals symbol
table. Variables defined here can be used to
pass values between tests because the
variables are visible within a given sequence
throughout the testplan.

Global to the testplan and all tests and actions
in all sequences. Contains predefined symbols
associated with the testing environment, such
as the user ID, test system ID, and serial
number of the UUT.

Global to the testplan and all tests and actions
in all sequences. Variables defined here can
pass values anywhere within a testplan.

Across all actions inside a test in a sequence;
i.e., each test has its own TestStepLocals
symbol table. Variables defined here can be
used to pass values between actions inside the
current test but not to actions in other tests.

Specific to a test in a sequence; i.e., each test
has its own TestStepParms symbol table.
Variables defined here contain parameters
passed to the test.

Global to the testplan and all tests and actions
in all sequences.

204

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

The hierarchy of symbol tables, and their scope, is shown graphically below.

I I
| | TestPlanG/oba/s| | System | | External... | I
I I
I .
| |Testplan (Main Sequence) :
| | SequenceLocals| . |
I Testplan (Main Sequence) I
I I
| || Testl | TestStepParms| |SequenceLoca/s| |
I I
: | TestStepLoca/s| Test1l | TestStepParms| |
I
[| TestStepLocals||| !
: Actions :
e | [| R
| Actions :
| ..moretests.. ¢ || |
I I
| |[Testn | TestStepParms | ... more tests ... |
I I
I | TestStepLocals | Testn | TestStepParms| I
I I
e | TestStepLocals ||| |
| Actions |
1 e | I | |
: Actions :
5 | oo |
I I
e e e e e -

Within the scope of testplans and tests, you can use HP TestExec SL's
graphical tools to access symbol tables from the Test Executive
environment. For example, View | Symbol Tables lets you examine or
modify the contents of symbol tables. If you wish to interact with symbol
tables from actions, you must use the C Action Development API described
in Chapter 2 of th&eference book.

Predefined Symbolsin the System Symbol Table

The System symbol table contains the following predefined symbols, all of
which allow read/write access. The values of some symbols are
automatically updated by HP TestExec SL, while others are simply

205

Working with Libraries, Datalogging, Symbol Tables, & Auditing

Using Symbol Tables

placeholders reserved for your use; i.e., you must explicitly write valuesto

them.

FixturelD

ModuleType

OperatorName

RunCount

SerialNumber

TestInfoCode

TestInfoString

TestStationlD

TestStatus

A string that contains a unique identifier for
whichever fixture (if any) the current testplan
uses to test the UUT. (placeholder)

A string that contains the identifier of the type
of UUT. (placeholder)

A string that contains the name of the current
login. (automatically updated)

An Int32 whose value contains how many
times the current testplan has been run since
it was loaded. It starts at 1 and increments by
1 each time. Choosing a different variant does
not affect its value. (automatically updated)

A string whose value contains the serial
number of the module currently being tested.
(placeholder)

An Int32 whose value contains the code
number set by the user fail mechanism. Its
value is O if the test has not failed via the user
fail mechanism. (placeholder)

A string returned from the user fail
mechanism. (placeholder)

A string that contains the identifier of a test
station if you have more than one.
(placeholder)

An Int32 whose value contains the pass/fail
result from the most recently run test. Its value
is 0 if the test failed, 1 if the test passed, and -
1 if no test has been run. (automatically
updated)

206

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

UnhandledError A string array that contains the contents of the
exception stack if an exception was detected
while running a testplan. The array’s contents
are the exception strings that appear in the
Report window. (automatically updated)

UnhandledErrorSource A string that contains the name of the test that
was executing when the most recent
exception was detected. If no test was
executing, the value is a null string.
(automatically updated)

If desired, you can have actionsin your tests examine or modify these values

as heeded. For example, you could examine Test St at us to determineif a

test failed and then change the test's parameters and rerun it before deciding
that it ultimately fails. Or, you could examine the valu®ehCount and

have a test execute the first time a testplan runs but not during subsequent
runs.

How Symbols Are Defined in Flow Control Statements

Be aware that symbols are defined “on the fly” when you use flow control
statements. For example, specifying “For Counter = 1to 5 Step 1”
automatically creates a symbol nant&xlint er in the SequencelLocals
symbol table for the current sequence. As with symbols you define
explicitly, you can interact programmatically with these symbols.

If you delete a flow control statement for which a symbol was created
automatically, you must manually delete that symbol from the symbol table
in which it resides.

207

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

Programmatically I nteracting with Symbols

The method used to examine or modify symbols depends upon where you
are when you access them.

In...

testplans

tests/test groups

actions

You can...

Use a flow control statement to examine or modify the
value of a symbol and act upon it. The syntax for
accessing symbols from flow control statements is
<symbol table. symbol>. For example:
I f System RunCount = 1 Then
| Execute first tine testplan runs
test MyTest
end if

Pass a parameter that references a symbol in a symbol
table; e.g., @yst em Test St at us.

Test Parameters I.-'-‘-.n::tin:lnsl Lirnits I EIptin:lnsI Dn:n::umentatin:unl

FParameters for Test 'Testl!
M arme: W alue ;I

kP aranmeter (@5 yztem. T extStatus

Use the UtaTableRegFindData() API function to return
the value of a symbol in a symbol table.

To Examine the Symbolsin a Symbol Table

1

2.

With atestplan loaded, choose View | Symbol Tablesin the menu bar.

When the Symbol Tables box appears, click the name of the desired

symbol table in the list near Tables.

button.

Browse the list of symbols and their characteristics that appears.

When you have finished using the Symbol Tables box, choose the Cancel

208

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

To Add a Symbol to a Symbol Table

1

2.

With atestplan loaded, choose View | Symbol Tablesin the menu bar.

When the Symbols Table box appears, click the name of the desired
symbol tablein the list near Tables.

Choose the Add Symbol button.

When the Insert Symbol box appears, use it to define the characteristics
of the new symboal.

In the Insert Symbol box, choose the Update button to save the newly
created symbol.

If you wish to add another symbol, choose the New button to clear the
data entry fields and then define the characteristics of the new symbol.

When you have finished using the Insert Symbol box, choose the Close
button.

To Modify a Symbol in a Symbol Table

1.

2.

With atestplan loaded, choose View | Symbol Tablesin the menu bar.

When the Symbols Table box appears, click the desired symbal in thelist
under Symboals.

Choose the Edit Symbol button.

When the Edit Symbol box appears, use it to edit the symbol’s
characteristics.

Choose the Update button to save the edited symbol.

Choose the Close button.

209

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

To Delete a Symbol from a Symbol Table
1. With atestplan loaded, choose View | Symbol Tablesin the menu bar.

2. When the Symbols Tables box appears, click the symbol to be removed
from the list under Symbols.

3. Choose the Delete Symbol button.

4. Choose the Close button.

Using External Symbol Tables

External symbol tables are user-defined and named symbol tables storedin a
file external to the testplan. Each testplan can be associated with one or more
external symbol tables, and each external symbol table can be associated
with one or more testplans.

To Create an External Symbol Table

1. Choose File | New in the menu bar.

2. When prompted for which kind of document to create, choose Symbol
Table.

3. Choose the OK button.
4. Inthedialog box that appears, choose the Add icon in the toolbar.

5. When the Insert Symbol box appears, use it to define the characteristics
of the new symbol.

6. Choose the Update button to save the newly created symbol.

7. If you wish to add another symbol, choose the New button to clear the
dataentry fields and then define the characteristics of the new symbol.

8. When you have finished using the Insert Symbol box, choose the Close
button.

210

Note

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Symbol Tables

9. Choose File | Save Asin the menu bar.

10. Specify the name of the file in which to store the external symbol table.

Although the name of the file and the name of the symbol table need not be
the same, naming them alike simplifies remembering their relationship later.

11. Choose the Save button.

To Link to an External Symbol Table

To make an external symbol table visible to atestplan, you must link or
associate it with the testplan. After you have linked an external symbol table
to atestplan, you can use its symbols the same way you use symbolsin
internal symbol tables.

1. Choose View | Symbol Tablesin the menu bar.

2. Inthe Symbol Tables box, choose the Link to External Symbol Table
button.

3. When prompted, specify the name of the external symbol table to be
associated with the testplan.

4. Choose the Open button.

5. Choose the OK button.

To Removea Link to an External Symbol Table
1. Choose View | Symbol Tablesin the menu bar.

2. Inthe Symbol Tables box, click the name of an external symbol tablein
the list near Tables.

3. Choose the Remove Link to Symbol Table button.

4. Choose the OK button.

211

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

Using Auditing

HP TestExec SL's auditing features let you document the history of software
revisions as you work with the software. You can describe changes to
testplans, tests, actions, and topology information. Shown below is a typical
dialog box in which you can record revision information for a testplan,
action, or switching topology.

Testplan Revizion Info E |

Current Wersion: IEIEl | ak. I
Created: |1 0/18/1996 14:17:54 Cancel |

Updated: |'I 241041336 5:51:42 Mew Versinn...l

Specification Mi I

Higtory:

-l

212

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing

As shown below, the Document tab in the Test Editor window lets you
specify revision information for tests.

HTest Editor Hix=E
Nare: INewTest‘l Wariant: INDrmaI _I
Surnmary: I

Parametersl F'ru:u:edurel Lirnitz I Options | Document I
r Dezcription:
2l
=l
r Revizion Information
Created: I
Last Modified : I
ILlnder Development ;I

After you have entered revision information, you can view or print it the
same as you do other information associated with atestplan.

Some of the auditing features are customizable; see “Setting Up the Auditing
Features” in Chapter 6.

To Document Testplans, Actions & Switching Topology

1. While editing a testplan, action definition, or switching topology layer,
choose File | Revision Information in the menu bar.

2. Enter a description of the current revision of the testplan, action, or
switching topology.

Tip: Use the New Version button to create a new revision when editing a
testplan.

3. Choose the OK button.

213

Working with Libraries, Datalogging, Symbol Tables, & Auditing
Using Auditing
To Document Tests

1. Intheright pane of the Testplan Editor window, choose the
Documentation tab.

2. Inthe data entry fields on the Documentation tab, enter a description of
the current revision of the test.

3. Click to theright of the drop-down list to specify the current status of the
test.

Note If you wish to customize the options that appear in this list, see “Setting Up
the Auditing Features” in Chapter 6.

4. Choose the Apply button to save the description.

Tip: If you change your mind, choose the Restore button to recall the
previous description.

To View or Print Auditing Infor mation
1. With a testplan loaded, choose View | Listing | Audit in the menu bar.

2. If you wish to print the information, choose File | Print in the menu bar
while viewing the listing.

214

System Administration

This chapter provides information about configuring and administrating
HP TestExec SL, which includes setting system security.

215

System Administration
System Setup

System Setup

Specifying the L ocation of the System Topology L ayer

If you wish to use HP TestExec SL's graphical features, such as the
Switching Path Editor, to control switching paths from tests, your test
system must have a system topology layer defined for it. The pathname of
the file containing the system layer is listed in[tissv t chi ng] section of

HP TestExec SL's initialization file, which is HP TestExec SL
home>\bin\tstexcsl.ini”, as shown below.

[Swi t chi ng]

; Systemtopol ogy file.

; The entry contains the nane of systemtopology file and/or path.
; The default path is the current working directory.

Syst em Layer =$ROOT$\ bi n\ syst em ust

Use a text editor, such as WordPad in its text mode, to modify this path as
needed.

For an overview of controlling switching and switching topology, see
Chapter 3 in th&etting Sarted book. For detailed information, see
Chapter 4 in this book.

Specifying the Default Variant for a New Testplan

An entry in the [Process] section of theHR TestExec SL

home>\bin\tstexcsl.ini” initialization file lets you specify which testplan

variant is used as the default when you create a new testplan. The entry looks
like this:

Def aul t Vari ant =Nor mal

Use a text editor, such as WordPad in its text mode, to modify this entry as
needed.

216

System Administration
System Setup

Setting Up an Operator or Automation Interface

Overview

Your goal in setting up an operator interface is to have the operator interface
appear instead of the Test Executive environment used to devel op testplans.
Automation interfaces are similar except that they also must automatically
log in to HP TestExec SL and load and run atestplan.

The methods for achieving these goals vary depending upon which language
was used to devel op the operator/automation interface. Interfaces devel oped
in Visual C++ resideinaDLL that is called by HP TestExec SL, while
interfaces developed in Visual Basic are external programs that call

HP TestExec SL.

For information about creating an automation interface, see Chapter 1in the
Customizing HP TestExec SL. book.

Setting Up an Automation Interfaceto Start Automatically

Sarting an Automation Interface Created in Visual Basic

All you need to do to start an automation interface created in Visua Basicis
run its executable file. Code in the automation interface handles tasks like
logging in to HP TestExec SL and loading and running atestplan.

Sarting an Automation Interface Created in Visual C++

Starting an automation interface created in Visual C++ requires HP TestExec
SL tolog in auser automatically and then load a custom user interface that
supports automation tasks. When setting up an automation interface, you
need to examine or edit entriesin the [Process] and [Components] sections
of the “<HP TestExec SL home>\bin\tstexcsl.ini” initialization file.

The [Process] section of the initialization file contains entries that look like
this:

Aut omat i on=Yes
Aut omat i on User Nane=<user nane>

SettingAut omat i on=Yes causes HP TestExec SL to use an automated
login sequence. The user name specified\idromat i on User Nane

217

System Administration
System Setup

will be used during the automated login sequence. This name must belong to
only one group of users, and it must not have a password associated with it.

The [Components] section of the file has an entry that follows this format:
<group nanme>=<autonmation DLL>

For gr oup namne, specify the group to which the user name specified for
Aut ormat i on User Name belongs. Foraut omat i on DLL, specify the
name of the DLL that contains the code for your automation interface.

Suppose alogin named Aut ormat i onUser had no password and was the
only member of agroup called Aut omat i on. The automation-related
entries for it might look like this:

[Process]

Aut omat i on=Yes

Aut omat i on User Nanme=Aut omati onUser
[Component]

Aut ormat i on=$ROOT$\ bi n\ st doper . dl |

Use atext editor, such as WordPad in its text mode, to modify these entries
as needed.

For more information about specifying HP TestExec SL's security features,
see “Controlling System Security.”

Setting Up Automatic Printing of Failure Tickets

If you implement a failure ticket printing scheme, you can add the following
line to the [Process] section to have a failure ticket printed to the default
printer:

Auto Print Failure Report=Yes

Use a text editor, such as WordPad in its text mode, to modify this path as
needed.

Specifying the Polling Interval for Hardware Handlers

If you are using a hardware handler to monitor the status of hardware, as
described under “Monitoring the Status of Hardware” in Chapter 2 of the
Customizing HP TestExec 9. book, you may want to specify how frequently
HP TestExec SL calls th&dvi seMoni t or () function in hardware
handlers. By default, this function is called every 100 milliseconds. You can

218

Note

System Administration
System Setup

change the interval for polling by adding an entry named Moni t or Ti me
Sl i ce to file “<HP TestExec SL home>\tstexcsl.ini” and specifying a
different value irmicroseconds, as shown below:

[Process]
Monitor Tinme Slice=500000

Use a text editor, such as WordPad in its text mode, to modify this value as
needed.

The value ohoni t or Ti me Sl i ce affects the performance of your test
system. The lower the value—i.e., the more frequently HP TestExec SL calls
the Advi seMoni t or () function in hardware handlers—the more time

your system spends polling instead of testing.

Setting Up the Auditing Features

If desired, you can modify the behavior of some aspects of HP TestExec
SL's auditing features.

For general information about auditing features, see the auditing topics in
Chapter 5.

Controlling the Appearance of the Status L ist

Entries in the “€HP TestExec S home>\bin\tstexcsl.ini” file determine what
appears in the drop-down status list on the Document tab in the Test Editor
window. The default entries are:

[Cust onmi zed Devel opnent St at us]
Statusl=Definition

St at us2=Under Devel opnent

St at us3=Under Testi ng

St at us4=Br oken

St at us5=Rel eased

You can change the status list's contents by using a text editor, such as
WordPad in its text mode, to modify these entries. For example, you can
rename existing items and add or delete items to change the length of the list.

219

System Administration
System Setup

Controlling the Operation of the Revision Editor

If desired, you can customize some features of the New Version box (shown
below) that appears when you use HP TestExec SL's auditing features to
create a new version of a testplan.

Mew Verzion [x|

Werzion Humber: I

Author: W Created: [12/18/1995 16:54:21

Spec. Number [| Last Update: [2/3/71957 11:54.28
Development Status I— Izer Figld 2 I
UsrFied3[User Field 4|

You can:

< Optionally prevent system operators from modifying the testplan’s
revision history.

« Optionally have the version number incremented automatically each time

you create a hew revision.

» Customize several labels associated with descriptive information entered

for revisions of the testplan.

Entries in the “©HP TestExec S home>\bin\tstexcsl.ini” file determine the
behavior of the New Version box. The default entries are:

[Cust onmi zed Revi sion Options]

Al'l ow Operator Edit=TRUE

Aut omati cally Increnent Revision Nunber=TRUE
Audi t Label =Spec. Nunber

User1 Label =Devel opnent St at us

User 2 Label =User Field 2

User 3 Label =User Field 3

User 4 Label =User Field 4

220

System Administration
System Setup

You can use atext editor, such as WordPad in its text mode, to modify these

entries, as described below.

This entry. . .
Allow Operator Edit

Automatically Increment
Revision Number

Audit Label

Userl-4 Label

Does this

When set to FALSE, prevents operators from
modifying the revision history of a testplan.

When set to TRUE, automatically increments
the Version number each time new revision
information is entered.

A label that will be associated with each new
revision that is created.

Text associated with user-defined labels. This
text appears in the revision history for each
new version that is created.

When you enter text in the fields adjacent to the Audit Label and Userl-4
Label in the New Version box, the labels and the contents of the fields

appear in therevision history

information displayed in the Testplan Revision

Information box, as shown below. By customizing the labels, you can make
them meaningful for your testing environment.

Testplan Revision Information ﬂ
Current Yersion: ID.'I ok, |
Created: I'I 2/M841936 16:54:21 Carcel |
Updated: |2.»"l 9/1997 &:43717

Spec. Mumber [12345

Higtary:

Werzion: 0.1

|pdated: 2/3/1397
Spec. Mumber: 123

zer Field 2: by tex

zer Field 4; My tex

Qperator; administrator

Development Status: My tewt for Development Status
Jzer Field 3 My Test far User Field 3

My comments for werzion 0.1 _I
b

11:54:28
45

t for zer Figld 2
tfor zer Field 4

221

System Administration
Directories and Files

Directories and Files

This section lists standard directories, files, and file extensions. It also offers
suggestions for locating libraries and managing temporary files.
Sandard Directories

HP TestExec SL has the following standard directories and files:

HP TestExec SL The default home directory for HP TestExec SL’s files (unless you
chose a different location when installing HP TestExec SL). This
directory contains as subdirectories all of the standard HP TestExec
SL directories listed below.

actions Contains the definitions for some predefined actions.

bin Contains the HP TestExec SL program and standard DLLs. Also
contains the standard initialization (“*.ini") files used by HP TestExec
SL.

doc Can contain supplemental documentation.

DefaultConfiguration Contains default copies of various files, such as initialization files.

include Contains C header files needed by Visual C++ to build user-defined
actions.

lib Contains libraries needed by Visual C++ to build user-defined
actions.

opui Contains source code for the sample operator interface created in
Visual C++

samples Contains subdirectories that contain examples provided on an as-is
basis.

222

System Administration
Directories and Files

Standard File Extensions

Various aspects of HP TestExec SL have associated files that are denoted by

specific extensions:

Testplans
Test libraries

Switching
topology files

Actions

External symbol
tables

Initialization files

.tpa (For example, “testplanl.tpa”)

.utd (For example, “arb2dmm.utd”.)

.ust (For example, “system.ust”,
“myuut.ust”.)

myfix.ust”,

HP TestExec SL supports three topology layers:
system (one per test system), fixture (one per fixture
type), and UUT (one per UUT type). The system “ust”
file loads when HP TestExec SL starts, based on a
path in the “tstexcsl.ini” file. The fixture and UUT “.ust”
files (as specified under View | Switching Topology
Files) load with each testplan. The system “.ust” file
reloads at this time.

.umd (For example, “measv.umd”.)

Actions consist of a “.umd” definition file and an
associated file that contains the action code. The file
that contains action code can contain code for more
than one action.

.sym (For example, “MyTestplan.sym”)

Each testplan can have one or more external symbol
tables associated with it.

.ini (For example, “tstexcsl.ini".)

See “Initialization Files” below.

223

System Administration
Directories and Files

Initialization Files

HP TestExec SL has the following initialization (“*.ini") files:

tstexcsl.ini

fmtdef.ini

dsdef.ini

Contains paths to other files required by HP TestExec SL
and values for various system parameters. This file, which
is located in the “<HP TestExec SL home>\bin” directory,
contains comments that describe its contents.

HP TestExec SL finds this file by locating its path in file
“win.ini” (located in the “<Windows home>" directory) under
the heading “[HP TestExec SL]". If “win.ini” does not have a
specific entry for “tstexcsl.ini”, HP TestExec SL looks in the
directory specified by the “windir” environment variable.

Specifies datalogging formats. HP TestExec SL finds this
file via a path in file “tstexcsl.ini”, which is located in
directory “<HP TestExec SL home>\bin”.

Specifies datalogging data source definitions. HP TestExec
SL finds this file via a path in file “tstexcsl.ini”, which is
located in directory “<HP TestExec SL home>\bin”.

224

System Administration
Directories and Files

Recommended L ocationsfor Files

C actions
(during
development)

C actions
(when ready for
general use)

Test libraries

Testplans

External symbol
tables

Switching
Topology files

utalib.vee

During development, keep action definitions
(“action.umd”) and simple testplans to exercise them
(such as “tryit.tpa”) in the same directory as the Visual
C++ project used to create the action DLL
(“<action_name>.dll").

Action definitions (“action.umd” files) belong in
directories with other logically related actions. The
action DLL (“<action_name>.dII") belongs in a
directory specified in the PATH environment variable.
See “Using Test & Action Libraries” in Chapter 5.

Standard test template (“*.utd”) files. You can choose
your own location and organization for these files.
See “Using Test & Action Libraries” in Chapter 5.

Standard testplan (“*.tpa”) files. You can choose your
own location and organization for these files. A good
practice is to place related testplans in the same
directory.

Files containing external symbol tables (“*.sym”)
belong in the directory containing the testplan with
which they are associated.

Because the fixture and UUT topology layers
(“uut.ust” and “fixture.ust”) are also loaded with the
testplan, you should keep these files in the same
directory as the testplan.

The system topology file (“system.ust”) can be
located anywhere. HP TestExec SL finds this file via a
path specified in file “<HP TestExec SL
home>\tstexcsl.ini”.

For HP VEE users. Provides HP VEE functions for
passing parameters back and forth between HP
TestExec SL and HP VEE. You may wish to move this
library from the “<HP TestExec SL home>\lib”
directory to a directory of your choice (typically the
“lib” subdirectory of the “vee” installation directory).

225

System Administration
Directories and Files

uta.llb For National Instruments LabVIEW users. Provides
functions for passing parameters back and forth
between HP TestExec SL and National Instruments
LabVIEW. You may wish to move this library from the
“<HP TestExec SL home>\lib” directory to a
subdirectory called “uta.lib” in the directory where
National Instruments LabVIEW is installed.

User files, DLLs You should create your own directory structure for
& directories any actions, DLLs, testplans, test libraries, and so on.
See the example below.

Note: If you place your own actions, DLLs, and such
in the directories created by HP TestExec SL, they
may be overwritten when you install new versions of
the software.

The following exampleillustrates a possible directory structure for

customized HP TestExec SL files. Note that the “bin” directory must appear
in the list of search paths for DLLs so the system can find the DLL files
when executing them; see “Managing DLLs” for more information about
specifying the search path for DLLs.

custom
bi n\ (custom zed DLLSs)
eecl.dl |
abs4. dl |
aut oui . dl |
actions\
eec1\
i nj pul . und
abs4\
serialin.und
projects\ (for action sources that you create)
t est pl an\
t est s\

Managing DLLs

While DLLs make possible much of the action library technology found in
HP TestExec SL, they also can complicate the initial development of action

226

System Administration
Directories and Files

code, particularly during the debugging phase. For example, it is easy to

attempt to execute—with adverse results—a DLL that is not matched with a
particular version of the HP TestExec SL software. It also is easy to become
confused about exactly which DLL has been loaded when there are multiple
copies of that DLL on a system, as frequently is the case when debugging.
How HP TestExec SL Searchesfor DLLs

HP TestExec SL has a specific way of looking for DLLs requested by an
application that is running. It searches for them in the order listed below.

1. Use whichever DLL already is in memory.

2. If the name of the DLL is preceded by a fully qualified path, use the full
pathname for the search.

Example of a full pathname: tkive>:\<dirname>\.. \<filename.dIl>"

3. If the name of the DLL is simplyfdkename> or <filename.dll>, search in
this order:

a. Search the list of paths specified for Dynamic Link Libraries in the
Search Paths tab in the Option box.

S |

E:-:eu:utiu:unl Hepu:urtingl Profiler - Search Paths |

Search paths for ID_I,Inamiu: Link. Libraries ;I

Testplan specific:

c:hProgram FileshHP TestEec 5L\zamplesibin

Edit...

Delete

L | | _PI bove Up

|
| Ddee |
[Mool |
[[Move bgwe |

[W

System-wide;

C:\Program Files\HP TestExec SL\bin

227

System Administration
Directories and Files

Testplan-specific paths are searched first, followed by System-wide
paths. Both are searched in the order in which the search paths appear
in their respective lists.

For more information about how to specify these search paths, see
“Specifying the Search Path for Libraries” in Chapter 5.

b. Search the directory that contains the “.exe” file that is executing.

If the pathname of the DLL includes a relative path—e.g.,
“\<filename.ext>" or “<dir>\<filename.ext>—the name of the DLL is
appended to the name of the directory containing the “.exe” file and
that becomes the pathname for the search. For example, if the
pathname of the DLL is “test\test.dll” and the “.exe” directory is
“c:\tstexcsl\bin”, the pathname for the search is
“c:\tstexcsl\bin\test\test.dll”. Or, if the pathname of the DLL is
“test.dll” and the “.exe” directory is “c:\tstexcsl\bin”, the pathname
for the search is “c:\test.dll”.

Situations That Can Cause ProblemsWith DLLs

If you use Visual C++ for debugging, it searches the current working
directory—i.e., the directory where the project is and the latest DLL is
stored—for the correct DLL to load. If the application—HP TestExec SL, in
this case—changes the current working directory before that DLL can be
loaded, then either the wrong DLL will be loaded (if one exists somewhere
besides the project directory) or a “DLL not found” error will occur.

Since HP TestExec SL lets you specify a new working directory when
loading a testplan, and DLLs containing action code are not loaded until the
testplan is, action DLLs are susceptible to this problem. A temporary
workaround is to create a new testplan first, using just the action desired so
that the DLL gets loaded, and then loading the real testplan to check the
action being debugged.

DLLs are not always unloaded from memory, especially if HP TestExec SL
terminated abnormally. Thus, if HP TestExec SL is run again the DLL in
memory will be used instead of the expected one. This can cause even more
problems if the version in memory is out of date with the rest of the system.

228

System Administration
Directories and Files

DLLsmust be consistent and compatible with the version of

HP TestExec SL that calls them. The best way to ensure thisisto build the

DLL using the “include” and “lib” files for that version of HP TestExec SL

to be sure of compatibility. It is also important to make sure the expected
DLL and the expected HP TestExec SL software really got run. Examples of
situations known to cause such problems include:

Building an action DLL with one version of the HP TestExec SL
software and executing it with another. Crashes can result.

To prevent this, be sure that the Visual C++ “directories” option points to
the correct version.

Running an action DLL from C++ debug with the wrong version.

To prevent this, be sure that the Visual C++ “debug” option points to the
right version.

Running an action DLL with a HP TestExec SL version it was not built
for. Subtle differences can cause unexpected results, including crashes.

To prevent this, be sure that the action DLL is being run by the correct
version of HP TestExec SL.

Running an action DLL that is already loaded. While this may be what
you want, if you have created a new DLL you must remove the old one
before the new will load. If the new DLL fails to behave as expected,
such as not stopping at breakpoints, this may be the cause.

Symptoms Associated with Loading the Wrong DLL

Among the symptoms you may see if the wrong DLL (or wrong version of
HP TestExec SL) has been loaded are:

Unexplained crashes of DLLs that previously worked.

Breakpoints set in a new DLL are never reached even though you know it
has to be executing that code.

229

Note

System Administration
Directories and Files

e A new entry point into an action is not found even though you just added
it to the DLL.

e The action does not do functions you just added to the DLL.

Minimizing the Problemswith DLLs

Do the following to minimize the problems caused by DLLs:

* When switching to a new version of HP TestExec SL, make sure the
search path for DLLs includes it.

< Do not create too many copies of a DLL. The fewer the better.

« Before building a DLL for use in an action, be sure the C++ “directories”
entry has pointers to the Version's files for Libraries and for Include.

» Before starting a debug run of HP TestExec SL from Visual C++, be sure
the “debug” option points to the correct version of “tstexcsl.exe”.

You can use theoadLi br ary() function in the Visual C++ environment
to load specific library files. See the Visual C++ documentation.

Managing Temporary Files

The most significant temporary files created by HP TestExec SL are the
datalogging files, which by default are stored in directory “\logdir” but can
be specified in the datalogging options for each testplan (View | Options).
Ideally, the application software that uses the datalogging files automatically
cleans up the temporary datalogging files. If no such application exists or if
it cannot automatically delete files, you must manually delete datalogging
files when you no longer need them.

Windows and Visual C++ sometimes create temporary (.tmp) files in the
“temp” directory specified in file “autoexec.bat”. These files can also
consume disk space, and you may need to delete them occasionally.

230

System Administration
Controlling System Security

Controlling System Security

This section tells you how to perform system administration tasks for the
HP TestExec SL system. Thisincludes using the default and custom security
settings.

The security system controls access to program functions, based on “users”
and “groups.” Users have log-in names and passwords and belong to groups.
Access to program functions is based on the group to which a user belongs.
Users that belong to the same group have the same access privileges to the
system.

Group privileges are based on access to resources. Resources are generally
tools, such as “Security” for using the security system or “SymVal” for
working with symbol tables.

After your HP TestExec SL system has been installed, we recommend that
you designate one person as the system administrator. The system
administrator should change the password for the system user, and,
optionally, add passwords to the operator, developer, and troubleshooter user
groups.

Using the Default Security Settings

HP TestExec SL's default security settings give you security protection
adequate for many work environments. In the default settings, user groups
and user names are identical and passwords are not assigned to any group
except the “system” group.

231

System Administration
Controlling System Security

User Groups

The default user groups are as follows:

Operator

Supervisor

Developer

Administrator

An operator of a test system. Operators can select and
run predefined testplans via an operator interface
personality for the Test Executive, but they cannot
access the test development personality.

A supervisor of test operators.

A developer of testplans, actions, and switching topology
layers. A Developer can write and save testplans, action
definitions, and switching topology layers, and has full
access to the Test Executive’s test development
environment except for system administration functions.

This group has full access to all functions and is usually
assigned only to the system administrator.

System Resources

The system resources to which user groups have access are as follows:

Security
Security Access

SymVal

Controls use of the security system.
Controls ability to modify the security system.

Controls use of values in symbol tables and
modification of parameter values.

Group Access Privileges

The following table lists the specific access privileges to system resources
for each default user group. The column on the left side lists the system
resource in bold type and the access to that resourcein plain type.

232

System Administration
Controlling System Security

System Resource Group
and Access

Operator | Supervisor Developer Administrator

Security
Read X X
Write
Edit User
Edit Group
New User
New Group
Set Access

X X X X X X X

Security Access
Modify Resources

x

SymVal
Read X X
Write
Print X
Secure
Print Value
Edit Value X

X X X X X X

Revision
Edit
Add X

x

Customizing Security Settings

You can change security settings, such as:

» Assigning or changing passwords.

« Adding, deleting, or editing user and group privileges.
* Modifying access privileges for groups.

To Change a Password

1. Choose File | Security | Change Password in the menu bar.

233

System Administration

Controlling System Security

2. Typethe current password in the Old Password field.

3. Typethe new password in the New Password field.

4. Retype the new password in the Confirm Password field.

5. Choose the OK button.

To Add a New User

1. Choose File | Security | Edit Security in the menu bar.

2. Click the New User button.

3. Specify theinformation for the new user.

A user’s information includes:

User Name

Full Name

Description

Password

Confirm Password

User Cannot
Change Password

The name the user must type when logging in.

The user’s full name (which may be different from
User Name).

Information about the user.

The password that the user must type when
logging in.

A verification of the password.

Click this box to prevent users from changing
their own passwords.

234

Note

4,

System Administration
Controlling System Security

User Inactive Click this box to deactivate the user’s access to
the software but retain the account information for
future use.

Groups: Member Click the Add or Remove buttons as needed to

of/Not Member of specify the user's membership in a group. For
example, click the name of a group the user is not
a member of, and then click the Add button to add
the user to that group.

Note: New users are not automatically assigned
to any group.

Choose the OK button.

To Modify an Existing User

1

2.

Choose File | Security | Edit Security in the menu bar.
Click auser in the list under User Name.

Choose the Edit button.

Modify the information associated with a user.

See “Adding a New User” above for a description of user information.

To Delete an Existing User

1.

2.

3.

Choose File | Security | Edit Security in the menu bar.
Click a user in the list under User Name.

Choose the Delete button.

To Modify a User’s Privileges

Users derive their privileges from the group(s) in which they are members.

235

System Administration
Controlling System Security

1. Choose File | Security | Edit Security in the menu bar.

2. Modify the privileges of the group(s) to which the user belongs or modify
the user's membership in the groups.

To Add a New Group of Users

1. Choose File | Security | Edit Security in the menu bar.

2. Choose the New Group button.

3. Inthe Group Namefield, type a name for the new group.

4. Inthe Description field, type a brief description of the new group.

5. Click the Add or Remove buttons as needed to specify which users
belong to the new group. For example, click the name of a non-member,
and then click the Add button to add that person to the group.

6. Choose the OK button.

To Modify an Existing Group of Users

1. Choose File | Security | Edit Security in the menu bar.

2. Select an existing group.

3. Choose the Edit button.

4. Make changes, as hecessary.

236

System Administration
Adding Custom Tools to HP TestExec SL

Adding Custom Toolsto HP TestExec SL

For an overview of custom tools, see “Using Custom Tools to Enhance the
Environment* in Chapter 3 of th8etting Started book.

Syntax for Adding Custom Tools

When you define custom tools, items that invoke them appear in a menu
named Tools that otherwise does not appear in HP TestExec SL's menu bar.

The syntax for each item you add to the Tools meru is:
<Tooln>=<Title>;<Type>;<Fpecification>

where

This item... Is...

Tooln A name and unique numeric identifier (n) for a tool. The
name of the tool must be “Tool” in the first level of the
menu structure, and the name of a [section] in submenus.
The numeric identifier’s value can be 0 through however
many items appear at any given level in the Tools menu.
The numbers must be in ascending order.

Title The title of an item as you want it to appear in the Tools
menu. Titleis ignored if Type is SEPARATOR.

Type The type of item, which can be:

EXE Your tool is an executable program;

i.e., its extension is “.exe”, “.com”, or
“ bat”.

DLL Your tool is a function in a DLL.

MENU Creates a new submenu in the Tools
menu.

1. Notethe use of semicolons (;) as delimiters between someitems. If you omit
items, be sure to leave the semicolons as placeholders.

237

System Administration

Adding Custom Tools to HP TestExec SL

SEPARATOR

Creates a separator bar between
items in the Tools menu

Specification A field whose contents vary with the Type of item.

If Typeis...

Then...

EXE

DLL

MENU

SEPARATOR

Use this field to specify the pathname
of the executable file to run; e.g.
“c:\winnt\notepad.exe” or
“c:\temp\myfile.bat”.

Use this field to specify the pathname
of the DLL, followed by a space and
the name of the function to run in the
DLL; e.g., “c:\MyDLL.dIl MyFunction”.
If you omit the function’s name, it
defaults to “execute”.

Use this field to specify the name of a
new [section] that defines a submenu
that contains a numbered list of
custom tools.

Leave this field blank.

A simple example that runs WordPad might look like this:

[Tool]

Tool 0=Run Wor dPad; EXE; c: \ program fil es\accessori es\ wordpad. exe

A dlightly more complex example that creates multiple tools might look like

this:
[Tool]

Tool 0=Run Wor dPad; EXE; c: \ program fil es\ accessori es\ wordpad. exe
Tool 1=Copy Testplan Files to Production; EXE; c:\ MyFi | es\ CopyFi | es. bat

238

System Administration
Adding Custom Tools to HP TestExec SL

Finally, an example that creates multiple tools, contains a separator bar, and
includes tools in a submenu might look like this:

[Tool]

Tool 0=Run Wor dPad; EXE; c: \ program fil es\ accessori es\ wordpad. exe
Tool 1=Run Custom Tool in DLL;DLL;c:\MFiles\MDLL.dl | MFunction
Tool 2=; SEPARATOR;

Tool 3=Fil e Copying Utilities; MENU, CopyFi | esSubnenu

[CopyFi | esSubnenu]

CopyFi | esSubnmenu0=Copy Files to Producti on; EXE; c:\ CopyToProducti on. bat
CopyFi | esSubnmenul=Copy Files to Archive; EXE; c:\ CopyToAr chi ve. bat

To Add Entriesto the Tools Menu

1. Useatext editor, such as WordPad in its text mode, to open file
“tstexcsl.ini” in the “bin” directory beneath HP TestExec SL's home
directory (which by default is “\Program Files\HP TestExec SL").

2. Locate the [Tools] section in the file.

3. Add entries that conform to the syntax shown above.

4. Save the file and exit the editor.

5. Restart HP TestExec SL so it will reread the initialization file.

239

Wor king with VXIplug&play Drivers

This chapter provides information about using HP TestExec SL with standard
V XIplug& play drivers for instruments.

241

Note

Working with VXIplug&play Drivers
What is VXIplug&play?

What is VXl plug&play?

V Xlplug& play is an industry standard that lets you program standalone and
V Xlbus instruments using various programming languages, such as

HP VEE, Visua Basic, and Visua C++. VXIplug&play drivers have a
consistent architecture, and are developed and used in a consistent fashion.
They let vendors of instruments develop drivers for their own instruments,
and ensure that those drivers are interoperable with drivers provided by other
vendors.

V XlIplug& play instrument drivers are conceptually one layer above
traditional instrument programming, which requiresindividual, low-level
I/O statementsin an application program that controls instruments. Instead,
V Xlplug& play driverslet you use higher-level languagesto call predefined
functions with nameslikei ni t (initialize) andr eset whose functionality
may include numerous low-level 1/0O calls. Because these functions are

written by those who know the instruments best—the instrument vendors—

they are optimized to use the unique capabitities of each instrument.

Your main source of information about \ViXuig& play is the documentation

provided with your instrument drivers. For example, you can look there to

find information about the “include” files needed when using programs
written in the C language to control instruments via MMg& play drivers.

242

Working with VXIplug&play Drivers
How Do HP TestExec SL & VXIplug&play Work Together?

How Do HP TestExec SL & VXIplug& play Work
Together?

V Xlplugé& play instrument drivers are compatible with HP TestExec SL's
strategy for hardware handlers. (For an overview of hardware handlers, see
Chapter 3 in th&etting Sarted book.) For example, both VElugé& play

drivers and hardware handlers include functions to initialize, reset, and close
hardware modules such as instruments.

Besides a small set of function calls shared byplxg& play drivers and

HP TestExec SL's hardware handlers, each driver strategy has its own
unique aspects. VXlug& play drivers include functions that are specific to
particular types of instruments. For example, although the drivers for a
DMM and a frequency counter both provide functions to initialize and reset
them, one instrument requires different functions to control it than does the
other because the functionality of the instruments is dissimilar. In a similar
fashion, HP TestExec SL's hardware handlers may include additional
functions that are specifically used to control switching hardware—such as
Set Posi ti on() andGet Posi ti on() —via the Switching Path Editor.

When HP TestExec SL runs, it automatically calls as needed the following
functions in hardware handlers or \fXlig& play drivers associated with
hardware modules via HP TestExec SL's Switching Topology Editor:

» Functions used to initialize hardware prior to using it.
In hardware handlers, this is thai t () function (which also resets the
module when called). In VXlug&play drivers, these are functions
whose names include “init”; e.dip34401 _init.

* Functions used to reset hardware to a known state.

In hardware handlers, this is tReset () function. In VXIplug& play
drivers, these are functions whose names include “reset”; e.g.,
hp34401 reset.

* Functions used to close—i.e., terminate communication with—hardware.

243

Working with VXIplug&play Drivers
How Do HP TestExec SL & VXIplug&play Work Together?

In hardware handlers, thisisthe Cl ose() function. In VXIplug& play
drivers, these are functions whose names include “close”; e.g.,
hp34401 cl ose.

Besides automatically initializing, resetting, and closing instruments via
VXI plug& play drivers, HP TestExec SL lets you interactively control
instruments from action code that you write. The method for doing this is
described next.

244

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

How Do Actions Control Instrumentsvia
VXIplug& play?

HP TestExec SL provides API functions used to communicate with
instruments from actions via V X1plug& play drivers. Shown below is an
example of how an action written in C can communicate with an instrument
viaaVXlplug&play driver.

voi d UTADLL ProgranPower Supply (HUTAPB hPar anet er Bl ock)

{

/1 Action routine that progranms an HP 66312 power supply.

/| Exanpl e assumes that paranmeter block contains three paraneters:
/1 Vol tage - type Real 64

/1 Current - type Real 64

/1 Power Supply - type Inst

/'l Assign mscellaneous vari abl es
HUTAREAL64 hDat a;

Vi St at us Error Codes;

HUTAI NST hl nstrunent;

/'l Get value of voltage from paraneter bl ock
hDat a = Ut aPbGet Real 64(hPar anet er Bl ock, "Vol tage");
doubl e dVolt = Ut aReal 64CGet Val ue(hDat a) ;

/1l Get value of current from paraneter bl ock
hDat a = Ut aPbGet Real 64(hPar anet er Bl ock, "Current");
doubl e dCurr = Ut aReal 64CGet Val ue(hDat a) ;

/1l Get the Vi Session identifier fromthe parameter block
hl nstrunent = Ut aPbGCet | nst (hPar amet er Bl ock, " Power Supply");
I ong | Vi Sessi on = Ut al nst Get Vi Sessi on(hl nstrument);

/1l Set the voltage & current, and turn on the output
Error Codes = hp66312_vol tCurrQutp (I Vi Session, dVolt, dCurr);

...(optional code that checks ErrorCodes for power supply errors)

return;

}

245

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

In the example above, acall to Ut aPbGet | nst () returnsthe handleto a

data container that contains data for an instrument—in this case, a power
supply—from the action’s parameter block. Given that handle, a call to

Ut al nst Get Vi Sessi on() returns a unique identifier for the
instrument’s ViSession. Once the identifier of the ViSession is known, the
example uses a standard \6Klg& play call, hp66312_vol t Curr Qut p,

to program the power supply to voltage and current limit settings passed in
as parameters—"Voltage” and “Current’—in the action’s parameter block.

The same example is shown below rewritten in C++ to use data types that
HP TestExec SL implements as C++ classes. Although the syntax differs
somewhat from the C example, the concepts are similar.

voi d UTADLL ProgranPower Supply (HUTAPB hPar anet er Bl ock)

{

/1 Action routine that prograns an HP 66312 power supply.

/| Exanpl e assumes that parameter block contains three paraneters:
/1 Vol tage - type Real 64

/1 Current - type Real 64

/1 Power Supply - type Inst

/1 Assign mscellaneous variables used in this function
Vi St at us Error Codes;
| ong | Vi Sessi on;

/1 Assign variables fromparaneters used by this action routine
I Ut al nst hPower Supply (hParanet er Bl ock, "Power Supply");

| Ut aReal 64 Vol t (hPar anet er Bl ock, "Voltage");

| Ut aReal 64 Curr (hParaneterBl ock, "Current");

/|l Get the ViSession identifier fromthe instrunent handl e
| Vi Session = Ut al nst Get Vi Sessi on (hPower Suppl y) ;

/1l Set the voltage & current, and turn on the output
Error Codes = hp66312_voltCurrQutp (I Vi Session, Volt, Curr);

...(optional code that checks ErrorCodes for power supply errors)

return;

}

246

Working with VXIplug&play Drivers
How Do Actions Control Instruments via VXIplug&play?

Programming other instruments from actions via V XIplug&play driversis
similar. Once you have obtained the identifier of a ViSession with the
instrument, you can call functionsin the V XIplugé& play driver.

For more information about creating C actions, see “Working with C
Actions” in Chapter 3 of this book.

247

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

To Control a VXIplug&play Instrument from an
Action

Configuring HP TestExec SL to Use VXl plug& play
I nstruments

Before an action can control instrumentsviaV XIplug& play, you must make
HP TestExec SL aware of those instruments, as described bel ow.

1. If the necessary 1/0O libraries and V X1plug& play drivers for instruments
are not already installed, install and configure them as described in their
documentation.

2. Use HP TestExec SL's Switching Topology Editor to add to the test
system’s topology a module for each instrument that uses a
VXI plug& play driver, as shown below. Typically, you will do this in the
system layer of topology; i.e., in file “system.ust”.

-£E Spstem. ust [[5] x|
CJAliases _
Wires Narne: [PowerSupplyT I Disable
[=Modules iotiot
Em Description: i odule for HP BE312 power supply
Prefix Ihp5531 2

Libirary: |AF‘F‘SW‘><IPNP\WINSE\hin\hpBEH 2 324l Browse... |

Farameter Block:

| |hztrument Descriptor GPIED:S Edit... |

248

Working with VXIplug&play Drivers
To Control a VXIplugé&play Instrument from an Action

Do the following when associating an instrument that uses a
V XlIplug& play driver with a module:

For the Prefix, enter the name of the instrument as it appears in calls
to the driver; e.g., calls to the HP 66312 begin with “hp66312” (as in
“hp66312_init") so that is what you should enter.

» For the Library entry, specify the name of the DLL in which the
VXI plug& play driver for the instrument resides.

» Press the Add button to load the parameter block.

« Use the value of the Instrument Descriptor in the parameter block to
define a unique instance of the instrument. For example, if your test
system had two HP 66312 power supplies, you might give the first a
Name of “PowerSupplyl” at address “GPIB0::5” and add a second
module named “PowerSupply2” at some other I/O address.

» Press the Update button to save your changes.

For more information about using the Switching Topology Editor, see
Chapter 4 in this book.

Creating the Action

Once HP TestExec SL is aware of instruments in your test system controlled
via VXIplug& play, you can create actions that control them. Actions that
control instruments via VXflug&play are similar to other kinds of actions
except that when using the Action Definition Editor to define the action, you
must add to the parameter block a parameter whose type is “Inst” for the
instrument you wish to control. The example below shows this parameter as

249

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

well as parameters for setting the voltage and maximum current output from
apower supply.

K™ ProgramPowerSupply.umd -- Action Definition Editor -- DLL Style !Elm

Action Description:

Action Mame: |F'rngramF'u:uwerS Lpply

Action that programs a power supply o ;I
Author: |HP Dermo a specified voltage & current

Library M ame: |F'rngramF'u:uwerS Lpplw.di ;I

Add-; |

r Kewwords

Master: [rezolution d
sample Delete |
FOUIce = —
trigaer hd

r Routines
0 Setup/Cleanup % Execute

Setup I

Execute: IF'nglamF'owerSuppIyEH

Llearup: I

r Action Parameters

The current rezult is; |<ND RESULT: vl

Name |Va|ue |Type |Attrihutes |D ;
PowerSupplyl Inst
oltage 0.000000000000 Real64
Current 0.000000000000 Real64

Do the following to add a parameter for the instrument:

1

2.

In the Action Definition Editor, choose the Add button.

When the Insert Symbol box appears, set the Type to “Inst”.
Enter a Name and Description for the parameter.

Choose the Edit Data Item button.

When the Instrument Reference Editor box appears, choose the desired
instrument.

250

Working with VXIplug&play Drivers
To Control a VXIplugé&play Instrument from an Action

As shown below, the Instrument Reference Editor box presents alist that
contains the instruments you used the Switching Topology Editor to
associate with hardware modules in the test system’s topology.

Instrument Reference Editor E

Uze thiz dialog to zelect an instrument.

Instrument: Cancel |

Instrument Mames Selected Instrument [nfarmation
Filker: I LI Description
Cibd i

6. Choose the OK button to save your changes in the Instrument Reference
Editor.

7. Choose the Update button to save your changes in the Insert Symbol box.
8. Choose the Close button to exit the Insert Symbol box.

Now you must write the code that implements the action using the concepts
described earlier under “How Do Actions Control Instruments via
VXI plugé& play?”

For more information about using the Action Definition Editor to define
actions, see “To Define an Action* and “Using Parameters with Actions” in
Chapter 3 in this book.

Using the Action in a Test

As shown below, using an action that programs an instrument via a
VXI plug& play driver is similar to using other kinds of actions in tests. The

251

Working with VXIplug&play Drivers
To Control a VXIplug&play Instrument from an Action

only thing different is that this action’s parameter list includes a parameter
that identifies which instrument is being controlled.

Test Mame: ITESH

Sumrary: IF'ngram power supply #1 to specified values

Test Parameters | Actions |Limit$ I I:Iptiu:unsl Dcu:umentationl

Actions for Test 'Test?!

r Dezcription of "ProgramPowerSupply”

&.chion that programs a power supply to a specified ;I
valtage & current

o | | Edit Symbals.. |

r Parameterz for "ProgramPowers upply'
M ame Walue | Degcription I;I
FisanSrand PowerSupplyl
Yoltage 5.00000000000
Current 0.500000000000 ;I

For more information about using actions in tests, see “Adding Actions to a
Test/Test Group“ in Chapter 2 of this book.

252

Working with VXIplug&play Drivers
Beyond VXIplug&play

Beyond V XIplug& play

A conceptual diagram of the layering of hardware and software when using
HP TestExec SL with hardware handlers is shown below.

HP TestExec SL | .| VXIplug&play | g | VISAVO | g | ypg¢ t
Driver Library fistrumen

The model when using HP TestExec SL with V XIplug& play instruments
lookslikethis:

HP TestExec SL —> VXIplug&play - VISAT/O —p| Instrument
Driver Library "

Recall that hardware handlers and V X1plug& play drivers are compatible,

but that their specific implementation—i.e., features—can vary considerably
from one handler or driver to the next. For example, pxg& play drivers
contain functions whose implementations are specific to a particular
instrument. Although you trigger both a frequency counter and a voltmeter
to take a reading, each type of instrument performs a different function and
requires different commands to trigger it. Similarly, you might program each
to a specific range prior to triggering it, but the details of the commands
required to change ranges would be different for a counter and a voltmeter.

As with VXIplug& play drivers, hardware handlers provide functionality that
is unique to them. For example, hardware handlers let you send status
messages to HP TestExec SL's Watch window during debugging (with the
Decl ar eSt at us() function). Also, they let you monitor the status of
tracing (with theAdvi seTr ace() function) and modify the hardware
handler’s behavior “on the fly” as appropriate for greater speed.

Suppose you could combine the functionality of hardware handlers and
VXI plug& play drivers. ldeally, the combination would provide
instrument-specific features needed to control instruments plus the enhanced

253

Working with VXIplug&play Drivers
Beyond VXIplug&play

interaction with HP TestExec SL's features possible via hardware handlers.
The conceptual diagram below shows how this is possiltheut modifying
the VXIplugé&play driver.

HP TestExec SL

—)p Hardware - VXIplug&play e VISA 1O =) | Instrument

Enhanced

Handler Driver Library

If desired, you can create an enhanced hardware handler that communicates
with or “handles” the VXplug& play driver. When HP TestExec SL calls
instrument-specific functions that reside in the YXg& play driver, you

have the option of passing them through the hardware handler unmodified or
enhancing their behavior.

For an example of an enhanced hardware handler that adds status
information to a VXplugé& play driver, search online help for “example,
sample code for enhancing a VXlIplug&play driver.” Comments in the
example describe how to use the Switching Topology Editor to associate
handlers/drivers with modules when using this strategy.

For more information about the features of hardware handlers, see “About
Hardware Handlers" in Chapter 3 of tBetting Sarted book. For more
information about creating hardware handlers, see Chapter 2 in the
Customizing HP TestExec S book.

254

| ndex

A specifying a switching path in a

aborting atestplan, 40 _switching action, 86
action things to know before creating, 96

adding a keyword to, 109

adding a parameter to, 106

adding parameters without modifying
behavior of, 98

adding revision control information
for auditing, 129

adding to atest or test group, 70

creating a switching action, 84

creating in C, 111

creating in HP BASIC for Windows,
159

creating in HP VEE, 147

creating in National Instruments
LabVIEW, 153

defining, 101

deleting a keyword from, 109

deleting a parameter to, 108

deleting a switching action, 85

deleting a switching path in a
switching action, 87

designing for reusability, 98

DLL style, 112

documenting action definitions, 99

documenting for auditing purposes,
213

example of two action routinesin a
singleDLL, 142, 143

languages you can use to create, 97

modifying a parameter to, 108

modifying a switching path in a
switching action, 86

overview of creating, 96

removing from atest or test group, 74

searching for in alibrary, 190

See aso "C action”

See also "HP BASIC for Windows
action"

See also "HP VEE action"

See aso "Nationa Instruments
LabVIEW action"

sharing a variable among, 79

single-stepping through, 54

types of parameters used with, 104
using to control instruments via
VXlplug&play, 245
viewing & printing contents of, 47
AdviseMonitor()
specifying how often HP TestExec SL
cals, 218
adias
adding to switching topology, 181
deleting from switching topology, 184
duplicating in switching topology, 187
modifying in switching topology, 182
API function
used to control switching paths, 124
arithmetic operator
using in flow control statements, 30
assignment operator ("="), 28
auditing, 212
adding revision control information
for actions, 129
controlling the appearance of the
status list on the Document tab,
219
controlling the operation of the
revision editor, 220
documenting testplans, actions &
switching topology, 213
documenting tests, 214
setting up auditing features, 219
viewing or printing information, 214
automatically starting an automation
interface, 217
automation interface
automatically printing failure tickets,
217
setting up, 217
specifying the polling interval for
hardware handlers, 218
starting automatically, 217

B
branching

Index-256

on afailing test, 31

on apassing test, 30

on an exceptionr, 32
breakpoint in atestplan, 51

C

C action
adding to an existing DLL, 142
creatinginanew DLL, 130
debugging, 144
exception handling, 120
using to control switching paths, 123
code reuse
adding parameters to existing actions
without modifying their behavior,
98
searching for actions & teststo reuse,
190
"comment" statement, 28
commentsin atestplan, 28
compatibility
adding parameters to existing actions
without modifying their
behaviour, 98
compiler
using parameter blocks with a C
compiler, 112
using parameter blocks with a C++
compiler, 115
controlling the flow of testing, 25
branching on afailing test, 31
branching on a passing test, 30
branching on an exception, 32
executing atest or test group only
once per testplan run, 33
flow control statements, 25
ignoring atest, 33
creating an action

inC, 111
in National Instruments LabVIEW,
153
overview, 96
custom tool

adding to HP TestExec SL, 237

D
datalogging
disabling for atest, 200
disabling pass/fail statusfor atest, 200
generating unique names for tests
when looping, 200
managing files, 203
overriding the default test name, 200
overview, 197
passing test limits, 202
selecting aformat, 200
setting options for entire testplan, 198
setting options for individual test, 200
using with Q-STATS programs, 201
debugging
atestplan, 50
C actions, 144
HP BASIC for Windows actions, 165
HP VEE actions, 150
using "dumpbin" to examineaDLL,
143
debugging atestplan
using the Watch window, 55
defining an action, 101
DLL
adding aC action to, 142
creating anew C action in, 130
how HP TestExec SL locates, 227
managing, 226
minimizing problems caused by, 230
minimizing problems with, 230
situations that can cause problems
with, 228
symptoms associated with oading the
wrong, 229
DLL styleaction, 112

E

"=" (assignment operator), 28
error handling

in HP VEE actions, 150
exception

branching on, 32
exception handling

in C actions, 120

Index-257

external symbol table, 204, 210
creating, 210
linking to, 211
removing link to, 211

=

failure ticket
printing automatically, 217
file
extensions, 223
initialization, 224
managing temporary files, 230
recommended locations, 225
file extensions, 223
fine-tuning atestplan, 59
fixture layer in switching topology
defining, 177
Fixturel D symbol in System symbol
table, 206
flagsin atestplan, 50
flow control statement, 25
"for...in", 27
"for...next", 26
"if...then...else", 26
"loop", 27
inserting into atestplan, 29
interacting with, 29
rulesfor using, 28
syntax for accessing symbols from,
29, 208
using arithmetic operatorsin, 30
"for...in" statement, 27
"for...next" statement, 26

G

global variable
using in atestplan, 41
whose scope is a sequence, 42
whose scope is the testplan, 41

H
hardware handler

specifying the polling interval for, 218
HP BASIC for Windows

related files that are installed, 160
HP BASIC for Windows action

creating, 159

creating a server program for, 161

debugging, 165

defining, 161

example, 164

restrictions on parameter passing, 160
HP TestExec SL

adding custom toolsto, 237

file & directory structure, 222

searching for actions & teststo reuse,

190

using with VXIplug&play, 243
HP VEE action

creating, 147

debugging, 150

defining, 148

error handling, 150

example, 148

executing on a remote system, 151

restrictions on parameter passing, 147

specifying the geometry for windows

in which actions appear, 151

I/O operations
viewing as the testplan runs, 37
"if...then...else" statement, 26
ignored test
using with variants, 33
ignoring atest during testplan
execution, 33
initialization file, 224
interactive controls & flagsina
testplan, 50

K

keyword, 109, 190
adding to an action, 109
associated with actions, 100
deleting from an action, 109

Index-258

L

LabVIEW. See "National Instruments
LabVIEW", 153
languages you can useto create actions,
97
layer in switching topology
defining the fixture layer, 177
defining the system layer, 174
defining the UUT layer, 179
names of files, 168
library
saving atest definitionin, 75
searching for itemsin, 190
specifying the search path for, 193
strategies for searching, 192
using to manage tests & actions, 190
limits
choosing variants when modifying
test limits, 91
choosing variants when viewing, 90
parameter types compatible with
limits checking, 106
specifying for atest, 73
viewing for atest, 90
limits checker
specifying which to use, 73
listing of testplans & system
information
finding specific text in, 49
generating, 48
printing, 49
Listing window, 47
"loop" statement, 27

M

master keyword, 190
adding to the list, 110
deleting from thelist, 110
maximizing throughput in testplans, 60
module
adding to switching topology, 185
deleting from switching topology, 187
duplicating in switching topology, 187
maodifying in switching topology, 187

M oduleType symbol in System symbol
table, 206
moving atestplan, 65
using search pathsto improve testplan
portability, 196

N

National Instruments LabVIEW, 153
creating an action in, 153
defining an actionin, 156
example of an action, 157
list of custom Vs provided by HP,
155
restrictions on parameter passing in
actions, 154
setting interface optionsin actions,
158
node
in switching topology
switching topology
nodesin, 172
specifying which character separates
adjacent nodes, 176

O

On Fail Branch To feature, 32
operator interface
registering atestplan for use with, 43
registering a UUT for use with, 44
setting up, 217
specifying the association between
testplans & UUTSs, 44
warning about flags |eft in testplans,
66
OperatorName symbol in System
symbol table, 206
optimizing the reliability of testplans,
59
option
specifying global optionsfor a
testplan, 43

Index-259

P

parameter
adding to atest or test group, 68
adding to an action, 106
deleting a parameter to an action, 108
modifying a parameter to an action,
108
modifying for atest or test group, 68
parameter types compatible with
limits checking, 106
removing from atest or test group, 69
restrictions on passing in HP BASIC
for Windows, 160
restrictions on passing in HP VEE,
147
specifying for atest or test group, 68,
72
types used in actions, 104
viewing for actionsin atest or test
group, 72
parameter block
using with a C compiler, 112
using with a C++ compiler, 115
pass/fail status of atest, controlling
during datalogging, 200
password
changing, 233
plug&play. See "V XIplug& play"
polling interval for a hardware handler,
218
preferred names in switching topology,
172
order of precedence, 173
profiler
running, 62
setting up prior to use, 61
using to optimize testplans, 61
viewing results in a spreadsheet, 63
viewing resultsin HP TestExec SL, 62
viewing resultsin Microsoft Excel, 63

Q
Q-STATS program
using datalogging with, 201

R
reliability
optimizing testplans for, 59
Report window
enabling & disabling, 36
specifying what appearsin, 36
results
passing between tests or test groups,
77
reusable code
designing actions for reusability, 98
RunCount symboal in System symbol
table, 206
running atestplan, 35

S

search path
removing from list, 195
specifying for libraries, 193
specifying system-wide, 194
specifying testplan-specific, 195
using to improve testplan portability,
196
security
access privileges listed by group, 232
access to system resources, 232
changing a password, 233
controlling, 231
customizing the settings, 233
default settings, 231
user groups, 232
separator character
between adjacent nodes in the
switching topology, 176
Sequencelocals symbol table, 204
SerialNumber symbol in System
symbol table, 206
server program for HP BASIC for
Windows actions, 161
single-stepping
through atest, 53
through atestplan, 53
through actionsin atest, 54
Skip flag in atestplan, 51
skipping atest, 51

Index-260

specifying the search path for libraries,
193
state
using to store switching data, 126
stopping atestplan, 40
stream of trace information, 39
switching
controlling during atest, 81
controlling with a C action, 123
namesof filesused intopology layers,
168
preferred names in topology, 172
watching nodes as tests execute, 57
switching action
creating, 84
deleting, 85
deleting a switching path in, 87
modifying a switching path in, 86
specifying a switching path in, 86
switching path
API for controlling, 124
controlling with a C action, 123
deleting, 87
modifying, 86
specifying, 86
switching topology
adding amodule, 185
adding awire, 183
adding an alias, 181
creating atopology layer, 180
defining the fixture layer, 177
defining the system layer, 174
defining the UUT layer, 179
deleting amodule, 187
deleting awire, 185
deleting an dlias, 184
documenting for auditing purposes,
213
duplicating an alias, wire, or module,
187
locations of files, 20
modifying a module, 187
modifying awire, 184
modifying an alias, 182
overview of defining, 168

preferred names, 172
specifying the location of the system
layer, 216
specifying the location of topology
files, 20
specifying which files to use, 43
Switching Topology Editor
using, 180
switching topology layer
specifying the search path for, 193
symbol
adding to a symbol table, 209
deleting in a symbol table, 210
examining in asymbol table, 208
in external symbol table, 210
modifying in asymbol table, 209
syntax for accessing from flow control
statements, 29, 208
symbol table, 204
adding a symbol, 209
creating an external, 210
deleting a symbol, 210
examining, 208
external, 204, 210
linking to an external, 211
list of, 204
list of predefined symbolsin System
symbol table, 206
modifying a symbol in, 209
removing link to an external, 211
Sequencelocals, 204
specifying the search path for, 193
syntax for accessing symbols from
flow control statements, 29, 208
System, 204
TestPlanGlobals, 204
TestStepLocals, 204
TestStepParms, 204
watching symbolsastestsexecute, 56,
57
system administration
controlling system security, 231
initialization files, 224
managing temporary files, 230
recommended locations for files, 225

Index-261

setting up a system, 216
setting up an operator/automation
interface, 217
setting up auditing features, 219
specifying the default variant for new
testplans, 216
specifying the location of the system
layer for switching topology, 216
standard directories, 222
standard file extensions, 223
system layer in switching topology
defining, 174
System symbol table, 204
list of predefined symbolsin, 206
system-wide search path, 194

T

temporary file, 230
test

adding anew test to atestplan, 21

adding a parameter to, 68

adding actions to, 70

adding an existing test to atestplan, 22

branching on afailing, 31

branching on a passing, 30

breakpoint, 51

documenting for auditing purposes,
214

examining or modifying, 23

executing only once per testplan run,
33

ignoring during testplan execution, 33

modifying a parameter for, 68

moving in atestplan, 23

passing results between, 77

removing a parameter from, 69

removing an action from, 74

saving atest definition in alibrary, 75

searching for in alibrary, 190

sharing a variable among the actions
In, 79

single-stepping through, 53

skipping, 51

specifying limitsfor, 73

specifying parameters for, 72

specifying when using variants, 88
using to control switching, 81
viewing & printing contents of, 47
viewing parameters for actionsin, 72
viewing the test execution details, 93
watching while debugging, 55
test definition
savinginalibrary, 75
specifying the search path for, 193
Test Execution Details window
viewing, 93
test group
adding a parameter to, 68
adding actionsto, 70
adding to atestplan, 21
examining or modifying, 23
executing only once per testplan run,
33
modifying a parameter for, 68
moving in atestplan, 23
passing results between, 77
removing a parameter from, 69
removing an action from, 74
sharing a variable among the actions
in, 79
specifying parametersfor, 72
specifying when using variants, 88
viewing & printing contents of, 47
viewing parameters for actionsin, 72
test library
saving atest definitionin, 75
test limits
choosing variants when modifying, 91
parameter types compatible with
limits checking, 106
specifying, 73
viewing, 90
TestInfoCode symbol in System symbol
table, 206
TestInfoString symbol in System
symbol table, 206
testplan
aborting, 40
adding anew test or test group, 21
adding avariant, 45

Index-262

adding an existing test, 22
branching on afailing test, 31
branching on a passing test, 30
branching on an exception, 32
commentsin, 28
controlling the flow of testing, 25
creating, 16
debugging, 50
deleting a variant from, 45
documenting for auditing purpose,
213
examining or modifying atest or test
group, 23
examining variants, 46
executing atest or test group only
once per testplan run, 33
fine-tuning, 59
ignoring atest in, 33
interactive controls & flags, 50
loading, 35
maximizing throughput, 60
moving, 65
moving atest or test group, 23
optimizing reliability of, 59
renaming avariant, 45
running, 35
running repetitively, 59
single-stepping through, 53
specifying global optionsfor, 43
specifying switching topology layers
for, 20
stopping, 40
using global variablesin, 41
using search pathsto improve testplan
portability, 196
using tests and test groups with
variants, 88
using variantsin, 44
viewing & printing contents of,, 47
viewing results while running, 36
TestPlanGlobals symbol table, 204
testplan-specific search path, 195
TestStationl D symbol in System symbol
table, 206

TestStatus symbol in System symbol
table, 206
TestStepLocals symbol table, 204
TestStepParms symbol table, 204
throughput
maximizing in testplans, 60
tool
adding custom tools to HP TestExec
SL, 237
topology. See "switching topology"
Trace flag in atestplan, 51
Trace window
default stream of trace information, 39
enabling & disabling, 38
specifying what appearsin, 39
specifying which stream of trace
information to view, 39
specifying which tests are traced, 38
using to view 1/O operations, 37
tracing 1/0 operations as the testplan
runs, 37
tracking software revisions, 212
troubleshooting
minimizing problemswith DLLS, 230
situations that can cause problems
with DLLs, 228
symptoms associated with loading the
wrong DLL, 229

U

user
adding anew, 234
adding anew group, 236
deleting, 235
modifying a group, 236
modifying an existing, 235
modifying privileges, 235
UUT layer of switching topology
defining, 179

\Y,

variable
sharing among actionsin atest or test
group, 79

Index-263

variant
adding to atestplan, 45
choosing when viewing test limits, 90
deleting, 45
globally examining in atestplan, 46
renaming, 45
specifying the default for new
testplans, 216
specifying variations on tests and test
groups when using, 88
using ignored tests with, 33
VI
list of custom National Instruments
LabVIEW Vs provided by HP,
155
VXlplug&play
overview, 242
using actions to control instruments
viaVXIplug&play, 245
using with HP TestExec SL, 243

w

Watch window
inserting a switching node into, 57
inserting a symbol into, 56, 57
removing items from, 58
using as a debugging aid, 55

wire
adding to switching topology, 183
deleting from switching topology, 185
duplicating in switching topology, 187
modifying in switching topology, 184

Index-264

	1 Working With Testplans
	A Suggested Process for Creating a Testplan
	Preparing to Write the Testplan
	Writing the Testplan

	To Create a Testplan
	To Specify Switching Topology Layers for a Testplan
	Using Tests & Test Groups in Testplans
	To Add a New Test/Test Group
	To Add an Existing Test
	To Examine or Modify a Test/Test Group
	To Move a Test/Test Group
	To Copy a Test/Test Group
	To Delete a Test/Test Group

	Controlling the Flow of Testing
	Using Flow Control Statements
	Which Flow Control Statements are Available?
	What Are the Rules for Using Flow Control Statements?
	To Insert a Flow Control Statement into a Testplan
	Interacting with Flow Control Statements
	Using Arithmetic Operators in Flow Control Statements

	To Branch on a Passing Test
	To Branch on a Failing Test
	To Branch on an Exception
	To Execute a Test/Test Group Once Per Testplan Run
	To Ignore a Test

	Running a Testplan
	To Load a Testplan
	To Run a Testplan
	Viewing What Happens as a Testplan Runs
	Using the Report Window to Monitor Results
	To Enable/Disable the Report Window
	To Specify What Appears in the Report Window

	Using the Trace Window to Monitor I/O Operations
	To Enable/Disable the Trace Window
	To Specify Which Tests are Traced
	To Specify What Appears When Tests are Traced

	To Stop a Testplan
	To Abort a Testplan

	Other Tasks Associated with Testplans
	Using Global Variables in Testplans
	To Use a Global Variable Whose Scope is the Testplan
	To Use a Global Variable Whose Scope is a Sequence

	To Specify the Global Options for a Testplan
	To Specify Which Topology Files to Use
	Using Testplans & UUTs with an Operator Interface
	To Register a Testplan for an Operator Interface
	To Register a UUT for an Operator Interface

	Using Variants in Testplans
	To Add a Variant to a Testplan
	To Rename a Variant in a Testplan
	To Delete a Variant from a Testplan
	To Examine All the Variants for a Testplan

	Examining Testplans & System Information
	Overview
	Which Kinds of Information Can I Examine?
	To List Testplans & System Information
	To Print Listings of Testplans & System Information
	To Find Specific Text in Testplans & Listings

	Debugging Testplans
	Using Interactive Controls & Flags
	Single-Stepping in a Testplan
	Single-Stepping Through Tests
	Overview
	To Single�Step Through the Tests in a Testplan
	To Cancel Single�Stepping Through the Tests in a Testplan

	Single-Stepping Through Actions
	Overview
	To Single�Step Through Actions

	Using the Watch Window to Aid Debugging
	Overview
	To Insert a Symbol into the Watch Window
	To Insert a Switching Node into the Watch Window
	To Insert an Instrument into the Watch Window
	To Remove an Item from the Watch Window

	Fine�Tuning Testplans
	Optimizing the Reliability of Testplans
	Optimizing the Throughput of Testplans
	Suggested Ways to Make Testplans Run Faster
	Using the Profiler to Optimize Testplans
	To Set Up the Profiler
	To Run the Profiler
	To View Profiler Results in HP�TestExec SL
	To View Profiler Results in a Spreadsheet

	Moving a Testplan

	2 Working With Tests & Test Groups
	Specifying Parameters for a Test/Test Group
	To Add a Parameter to a Test/Test Group
	Modifying a Parameter for a Test/Test Group
	To Remove a Parameter from a Test/Test Group

	Specifying Actions for a Test/Test Group
	To Add an Action to a Test/Test Group
	To Specify Parameters for Actions in a Test/Test Group
	To View Parameters for Actions in a Test/Test Group
	To Specify the Limits for a Test
	To Remove an Action from a Test/Test Group

	To Save a Test Definition in a Library
	To Pass Results Between Tests/Test Groups
	To Share a Variable Among Actions in a Test/Test Group
	Controlling Switching During a Test/Test Group
	Overview of Creating a Switching Action
	To Create a Switching Action
	To Delete a Switching Action
	To Specify a Switching Path in a Switching Action
	To Modify a Switching Path in a Switching Action
	To Delete a Switching Path in a Switching Action

	Specifying Variations on Tests/Test Groups When Using Variants
	Overview
	To Specify a Test/Test Group’s Characteristics for Each Variant

	Using Test Limits
	To View the Limits for Tests in a Testplan
	To Modify the Limits for Tests in a Testplan

	Viewing the Test Execution Details
	Overview
	To View the Test Execution Details

	3 Working With Actions
	Things to Know Before Creating Actions
	How Do I Create Actions?
	Which Languages Can I Use to Create Actions?
	Improving the Reusability of Actions
	Designing for Reusability
	Documenting Your Actions
	Choosing Names for Actions
	Entering Descriptions for Actions
	Entering Descriptions for Parameters
	Choosing Keywords for Actions

	To Define an Action
	Using Parameters with Actions
	Types of Parameters Used With Actions
	To Add a Parameter to an Action
	To Modify a Parameter to an Action
	To Delete a Parameter to an Action

	Using Keywords with Actions
	To Add a Keyword to an Action
	To Delete a Keyword from an Action
	To Add a Master Keyword to the List
	To Delete a Master Keyword from the List

	Creating Actions in C
	Overview of the Process
	Writing C Actions
	Using Parameter Blocks With a C Compiler
	Using Parameter Blocks With a C++ Compiler

	Exception Handling in C Actions
	Using C Actions to Control Switching Paths
	Overview
	Using API Functions to Control Switching Paths
	Using States to Store Switching Data

	Adding Revision Control Information for Actions
	Example of Creating a C Action in a New DLL
	Defining the Action
	Specifying the Development Environment Options
	Setting the Path for Libraries
	Setting the Path for Include Files

	Creating a New DLL Project
	Specifying the Project Settings
	Writing Source Files for the Action Code
	Adding Source Files to the Project
	Updating Dependencies
	Verifying the Project’s Contents
	Compiling the Project
	Copying the DLL to Its Destination Directory
	Overview
	Creating a Custom Tool to Copy the DLL
	Using the Custom Tool to Copy the DLL

	Example of Defining a C Action
	Adding a C Action to an Existing DLL
	Debugging C Actions

	Creating Actions in HP VEE
	Restrictions on Parameter Usage in HP VEE
	Defining an HP VEE Action
	Example of an HP VEE Action
	Debugging HP VEE Actions
	Error Handling in HP VEE
	Controlling the Geometry of HP�VEE Windows
	Executing HP VEE Actions on a Remote System

	Creating Actions in National Instruments LabVIEW
	Related Files
	Restrictions on Parameter Passing
	Defining a National Instruments LabVIEW Action
	Example of a National Instruments LabVIEW Action
	Setting Interface Options for National Instruments LabVIEW

	Creating Actions in HP BASIC for Windows
	Related Files
	Restrictions on Parameter Usage in HP BASIC for Windows
	Defining an HP BASIC for Windows Action
	Creating an HP BASIC for Windows Server Program
	Example of an HP BASIC for Windows Action
	Debugging HP BASIC for Windows Actions

	4 Working with Switching Topology
	Defining the Switching Topology
	Overview
	Matching Physical Hardware to Logical Names
	Where Do the Names of Switching Paths Come From?
	Using Aliases to Simplify the Names of Switching Paths
	When Should I Specify Wires?
	What Happens If a Node Has Multiple Names?
	How Do I Specify the Preferred Name for a Node?

	Defining the System Layer
	Defining the Fixture Layer
	Defining the UUT Layer
	Using the Switching Topology Editor
	To Create a Topology Layer
	Using Aliases
	To Add an Alias
	To Modify an Alias
	To Delete an Alias

	Using Wires
	To Add a Wire
	To Modify a Wire
	To Delete a Wire

	Using Modules
	To Add a Module
	To Modify a Module
	To Delete a Module

	Duplicating an Alias, Wire, or Module

	5 Working with Libraries, Datalogging, Symbol Tables, & Auditing
	Using Test & Action Libraries
	How Keywords Simplify Finding Items in Libraries
	Searching for Items in a Library
	Strategies for Searching Libraries
	Specifying the Search Path for Libraries
	To Specify System�Wide Search Paths for Libraries
	To Specify Testplan�Specific Search Paths for Libraries
	To Remove a Path from the List of Search Paths

	Using Search Paths to Improve Testplan Portability

	Using Datalogging
	What Happens During Datalogging?
	What is the Format of Logged Data?
	Controlling How Datalogging Works
	To Set the Datalogging Options for an Entire Testplan
	To Set the Datalogging Options for an Individual Test
	To Select the Datalogging Format

	Using Datalogging with Q-STATS Programs
	To Set the Learning Feature & Pass Limits
	Restrictions on the Names of Tests

	Managing Datalogging Files

	Using Symbol Tables
	About Symbol Tables
	Predefined Symbols in the System Symbol Table
	How Symbols Are Defined in Flow Control Statements
	Programmatically Interacting with Symbols
	To Examine the Symbols in a Symbol Table
	To Add a Symbol to a Symbol Table
	To Modify a Symbol in a Symbol Table
	To Delete a Symbol from a Symbol Table
	Using External Symbol Tables
	To Create an External Symbol Table
	To Link to an External Symbol Table
	To Remove a Link to an External Symbol Table

	Using Auditing
	To Document Testplans, Actions & Switching Topology
	To Document Tests
	To View or Print Auditing Information

	6 System Administration
	System Setup
	Specifying the Location of the System Topology Layer
	Specifying the Default Variant for a New Testplan
	Setting Up an Operator or Automation Interface
	Overview
	Setting Up an Automation Interface to Start Automatically
	Starting an Automation Interface Created in Visual�Basic
	Starting an Automation Interface Created in Visual�C++

	Setting Up Automatic Printing of Failure Tickets
	Specifying the Polling Interval for Hardware Handlers

	Setting Up the Auditing Features
	Controlling the Appearance of the Status List
	Controlling the Operation of the Revision Editor

	Directories and Files
	Standard Directories
	Standard File Extensions
	Initialization Files
	Recommended Locations for Files
	Managing DLLs
	How HP TestExec SL Searches for DLLs
	Situations That Can Cause Problems With DLLs
	Symptoms Associated with Loading the Wrong DLL
	Minimizing the Problems with DLLs

	Managing Temporary Files

	Controlling System Security
	Using the Default Security Settings
	User Groups
	System Resources
	Group Access Privileges

	Customizing Security Settings
	To Change a Password
	To Add a New User
	To Modify an Existing User
	To Delete an Existing User
	To Modify a User's Privileges
	To Add a New Group of Users
	To Modify an Existing Group of Users

	Adding Custom Tools to HP TestExec SL
	Syntax for Adding Custom Tools
	To Add Entries to the Tools Menu

	7 Working with VXIplug&play Drivers
	What is VXIplug&play?
	How Do HP TestExec SL & VXIplug&play Work Together?
	How Do Actions Control Instruments via VXIplug&play?
	To Control a VXIplug&play Instrument from an Action
	Configuring HP�TestExec SL to Use VXIplug&play Instruments
	Creating the Action
	Using the Action in a Test

	Beyond VXIplug&play

	Index

